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1 Introduction

We analyze the trade-off between the benefit of hedging in terms of gains from trade and

its cost in terms of financial instability.1 The benefit arises since hedging enhances risk-

sharing opportunities between agents with different risk-bearing capacities. The cost arises

when hedging creates hidden leverage that increases risk-taking incentives. We build on this

trade-off to develop an incentive-based rationale for margins and their substitutability or

complementarity with capital requirements.

We model hedging as the design of an optimal contract between a risk-averse buyer of

insurance who seeks protection against a risk exposure and a risk-neutral seller of insurance

who provides the protection. Examples of hedging contracts are forward contracts, futures

and credit default swaps (CDS).

Financial institutions selling protection are exposed to risk from their own assets and

liabilities, i.e., they are exposed to balance sheet risk. Controlling balance sheet risk is

costly. For example, financial institutions must devote resources to scrutinize the default

risk of their borrowers or to manage their maturity mismatch.2 Not controlling balance

sheet risk (risk-taking) can lead to the failure of the protection seller and to the default on

his contractual obligations. Protection buyers are therefore exposed to counterparty risk. For

example, Lehman Brothers and Bear Stearns defaulted on their CDS derivative obligations

because of losses incurred on their other investments, in particular sub-prime mortgages.

Our main assumption is that the care with which financial institutions manage their

balance sheet risk is unobservable to outsiders and that financial institutions are protected

by limited liability. This creates a moral hazard problem between the buyer and seller of

protection. In this context, we show that hedging creates hidden leverage: Ex-ante, when

entering the position, the hedge is neither an asset nor a liability for the protection seller. For

1Rajan (2006) notes that while hedging enhances risk-sharing opportunities it can also create new risk-
taking venues.

2For example, in the wake of the 2007-09 crisis many financial institutions financed themselves through
short-term debt. While such financing was relatively easy to establish, it left these institutions exposed to
the risk of not being able to roll-over their liabilities (Brunnermeier and Oehmke, 2009; Acharya et al., 2009).
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example, the seller of a credit default swap pays the buyer in case of credit events (default,

restructuring) but collects an insurance premium otherwise. On average, for the seller to

be willing to enter the position, she must at least break even. But, if negative information

about the underlying position arrives after the contract is signed, the hedge is more likely to

be a liability for the protection seller. For instance, after bad news about the future solvency

of firms, the seller of a CDS is more likely to pay out the insurance than after good news.

The implicit liability embedded in the hedging position undermines the protection seller’s

incentive to control her balance sheet risk.3 This is because she bears the full cost of risk

control while the benefit accrues in part to the protection buyer.4

Given the incentives of the protection seller, the buyer faces a trade-off between risk-

sharing and risk-taking. If he wants to curb risk-taking incentives, he must reduce the

hidden leverage by accepting incomplete risk-sharing. Since such under-insurance is costly,

he may instead opt for full insurance, recognizing that it will encourage risk-taking and lead

to counterparty risk.

Our analysis thus identifies a channel through which hedging together with asymmetric

information can lead to systemic risk. In the absence of a moral hazard problem, the risk the

protection buyer is hedging and the balance sheet risk of the protection seller are independent.

The counterparty risk that arises endogenously when the hidden leverage leads to risk-taking

creates interconnectedness: advance negative news about the risk of the protection buyer

propagates to the protection seller whose default risk increases.5

We use the model to develop an incentive-based theory of margins. The buyer and

seller of protection can agree as part of their risk-sharing transaction that the seller deposits

cash on a separate account if the buyer makes a margin call. This is costly since cash

3Holmström and Tirole (1998) show how liquidity shocks can weaken incentives to exert effort. In contrast,
in the present analysis, we show how information shocks can weaken incentives.

4This is in line the debt-overhang effect identified by Myers (1977). Note, however, that instead of
exogenous debt, we have endogenous liabilities emerging from optimal contracting.

5Our approach differs from other models of systemic risk, see, e.g., Freixas, Parigi and Rochet (2000),
Cifuentes, Shin and Ferrucci (2005), and Allen and Carletti (2006), since in our analysis contagion arises
because of incentive problems.
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deposited will earn a lower rate of return than assets kept on the balance sheet. The benefit

is that these assets are ring-fenced from risk-taking. The margin thus reduces the size

of the moral hazard problem between the protection buyer and seller. However, margins

have a potential downside. To the extent that margins insure against counterparty risk,

they make the protection buyer more willing to accept risk-taking by the protection seller.

Our analysis thus supports as well as challenges the view that market infrastructures that

enable implementation of margin calls can reduce the vulnerability of the financial system

to systemic risk.6

When the failure of financial institutions affects third parties, privately optimal contracts

that entail risk-taking, including those with margins, may not be socially optimal. In this

case, one way to mitigate systemic risk is to impose capital requirements. Requiring a

financial institution to hold capital in proportion to its hedging activities counters the hidden

leverage embedded in these activities. Having more to lose in case of default (“skin in the

game”) reduces risk-taking incentives. By extension, financial institutions that opt out of

such capital requirements should not be allowed to undertake hedging activities that are

conducive to risk-taking.

The remainder of the paper is organized as follows. In Section 2, we describe the model

setup. In Section 3, we analyze the benchmark case in which effort is observable and there is

no moral hazard. In Section 4, we analyze the optimal contract when effort is unobservable.

To develop the trade-off between risk-sharing and risk-taking, we assume temporarily that

the technology to have margin is not available. In Section 5, we discuss the implementation

of the optimal contract. In Section 6, we analyze the optimal contract with margins. In

Section 7, we examine regulatory interventions when there is a wedge between private and

social welfare. Section 8 analyzes the case when there are multiple protection sellers who

can reinsure or trade with each other. Section 9 concludes. All proofs are in the appendix.

6See, for example, Pirrong (2009).
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2 The model

There are three dates, t = 0, 1,2, and two agents, the protection buyer and the protection

seller, who can enter a risk-sharing contract at t = 0.

Protection buyer. The protection buyer is risk-averse with twice differentiable concave

utility function, denoted by u. At t = 0 he is endowed with a risky exposure of size I whose

per unit return is θ̃. The return is realized at t = 2. It can take on two values: θ̄ with

probability π and
¯
θ with probability 1 − π. Moreover, the buyer has an amount C of cash

which has zero net return. He seeks insurance against the risk θ̃.

Protection seller. The protection seller is risk-neutral. At time t = 0 she has an

amount A of assets in place which have an uncertain per unit return R̃ at t = 2 (balance

sheet risk).

At t = 1 the protection seller has to exert costly unobservable effort e to manage the

risk of her assets. To capture the moral hazard problem in the simplest possible way, we

assume that the protection seller can choose between effort, e = 1, and no effort, e = 0. If

she exerts effort, we assume that AR̃(e = 1) = AR > A. If she does not exert effort, then

AR̃(e = 0) = AR with probability p and AR̃(e = 0) = 0 with probability 1 − p. That is, if

the seller does not manage the risk of her balance sheet then she may default her obligations

since she protected by limited liability (counterparty risk).

If the seller does not exert effort, she obtains a private benefit B per unit of assets on

her balance sheet. That is, the cost of controlling balance sheet risk is proportional to the

size of the balance sheet. Note that the impact of the seller’s effort on R̃ does not depend

on the return of the buyer’s asset θ̃. We assume that the opportunity cost of not exerting

effort is higher than the private benefit: (1− p)R > B. Hence, the protection seller prefers

effort to no effort if she is solely concerned with managing the risk of her assets.

Since the seller is protected by limited liability, she does not internalize the losses that

may occur to others if she does not exert effort. Even though not exerting effort can be

privately optimal, it may not be socially optimal. We will discuss social optimality and the
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scope for regulation in Section 7. Until then, we simply speak of ”optimality” when meaning

private optimality.

Advance information. Information about the risk θ̃ is publicly revealed at t = 0.5,

before the seller makes her effort decision at t = 1. Specifically, a signal s̃ about the return

θ̃ is observed. Let λ be the probability of a correct signal:

λ = prob[s̄|θ̄] = prob[
¯
s|̄θ]

The probability π is updated to π̄ upon observing s̄ and to
¯
π upon observing

¯
s, where

π̄ = prob[θ̄|s̄] =
prob[s̄|θ̄]prob[θ̄]

prob[s̄]
=

λπ

λπ + (1− λ)(1− π)

¯
π = prob[θ̄|̄s] =

prob[
¯
s|θ̄]prob[θ̄]

prob[
¯
s]

=
(1− λ)π

(1− λ)π + λ(1− π)

according to Bayes’ Law.

We assume that λ ≥ 1
2
. If λ = 1

2
, π̄ = π =

¯
π and the signal is completely uninformative.

It is as if there was no advance information about the risk θ. For λ > 1
2
, π̄ > π >

¯
π,

observing s̄ increases the probability of θ̃ = θ̄ (good signal) whereas observing
¯
s decreases

the probability of θ̃ = θ̄ (bad signal). If λ = 1, the signal is perfectly informative and it is

as if the realization of θ̃ was already observed at t = 0.5.

Contract. The contract specifies a transfer τ from the protection seller to the protection

buyer, conditional on all contractible information (in case τ < 0, the buyer pays the seller).

The contract can also specify a margin α to be deposited by the protection seller as cash

with a third party (see below). We assume that the realization of θ̃, the return on the seller’s

assets R̃ and the advance signal s̃ are all publicly observable and contractible. Hence, the

contract is given by τ = τ(θ̃, R̃, s̃). The contract must also be consistent with the limited

liability of the protection seller, so that AR̃ > τ(θ̃, R̃, s̃). We assume AR > I∆θ, which

implies that as long as the agent exerts effort, the limited liability constraint does not bind.
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Margins. A margin is a technology that allows the protection seller to liquidate a fraction

α of her assets for cash and to deposit the cash on a separate account when requested to

do so by the protection buyer. Thus, αA earns the risk-free rate (which we normalize to

one), while (1−α)A continues to earn the return R̃ whose distribution depends on the effort

choice of the protection seller. The liquidation of assets into cash and the transfer of cash

into a separate account removes the fraction α of the seller’s assets from her balance sheet.

Those assets are ring-fenced from the seller’s moral hazard problem. The cash is unaffected

by the default of the seller and can be used to service the buyer’s claim. At the same time,

the seller no longer obtains private benefits on those assets since he no longer controls them.

We will consider two types of margins. An initial margin is a requirement to deposit

cash at t = 0, when the protection buyer and seller enter a risk-sharing contract. A varia-

tion margin is a requirement to deposit cash after advance information about the risk θ is

observed.

The sequence of events is summarized in Figure 1 below.

-
timet=0 t=0.5 t=1 t=2

Risk-averse protection
buyer seeks insurance
from a risk-neutral
protection seller.

Advance information
about the risk is
observed.

Protection seller chooses
whether or not to exert
effort to manage the risk
of her assets.

Risk underlying the
transaction realizes.

Shock to the return of
the seller’s assets real-
izes.

Contract is settled.

Figure 1: The timing of events

3 First-best: observable effort

In this section we consider the case where the protection buyer can observe the effort level

of the protection seller so that there is no moral hazard problem. While implausible, this

case will enable us to identify the inefficiencies generated by moral hazard.
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Consider the case where the protection buyer instructs the protection seller to exert effort

after both a good and a bad signal. In that case the seller’s assets always return R̃(1) = R.

Hence we don’t need explicitly write R̃ when writing the variables upon which τ is contingent.

Since the seller never defaults when exerting effort, the margin is never transferred to the

protection buyer. Also, as will be clear below, under our assumption that AR > I∆θ, the

limited liability constraint of the agent does not bind when he exerts effort. Hence, for

simplicity we neglect that constraint.

The protection buyer solves

max
α,τ(θ̄,s̄),τ(

¯
θ,s̄),τ(θ̄,

¯
s),τ(

¯
θ,

¯
s)
πλu(C + Iθ̄ + τ(θ̄, s̄)) + (1− π)(1− λ)u(C + I

¯
θ + τ(

¯
θ, s̄)) (1)

+π(1− λ)u(C + Iθ̄ + τ(θ̄,
¯
s)) + (1− π)λu(C + I

¯
θ + τ(

¯
θ,

¯
s))

subject to the seller’s participation constraint

πλ[αA+ (1− α)AR− τ(θ̄, s̄)] + π(1− λ)[αA+ (1− α)AR− τ(θ̄,
¯
s)]

+ (1− π)λ[αA+ (1− α)AR− τ(
¯
θ,

¯
s)] + (1− π)(1− λ)[αA+ (1− α)AR− τ(

¯
θ, s̄)] ≥ AR

where 0 ≤ α ≤ 1 is a fraction of assets to be deposited as an initial margin.7 The expression

on the right-hand side is seller’s payoff if she does not enter the transaction. It is given by

the return on her capital, AR.

The participation constraint can be written as

αA (1−R) ≥ π
[
λτ(θ̄, s̄) + (1− λ)τ(θ̄,

¯
s)
]

+ (1− π) [λτ(
¯
θ,

¯
s) + (1− λ) τ(

¯
θ, s̄)] = E[τ ] (2)

where the expectation is over θ̃ and s̃. If margins are not used (α = 0), the protection

seller agrees to the contract as long as the average payment to the buyer is non-positive. If

7The case of a variation margin can be written analogously. Unlike an initial margin, which affects the
seller’s return on assets in all four states of the world, a variation margin is called after a particular signal,
thus affecting only two states.
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margins are used (α > 0), the protection seller needs to be compensated for the opportunity

cost of putting cash aside, R−1. The Proposition 1 states the solution to this maximization

problem. It is easy to show that the corresponding value function is greater than what would

be obtained if effort was not always requested. Thus, we can state our first result.

Proposition 1 (First-best contract) When effort is observable, the optimal contract en-

tails effort after both signals, provides full insurance, and is actuarially fair. Margins are

not used. The transfers are given by:

τFB(θ̄, s̄) = τFB(θ̄,
¯
s) = −(1− π)I∆θ = I(E[θ̃]− θ̄) < 0

τFB(
¯
θ, s̄) = τFB(

¯
θ,

¯
s) = πI∆θ = I(E[θ̃]−

¯
θ) > 0

In the first-best contract, the consumption of the protection buyer is equalized across

states (full insurance). The contract does not react to the signal. Since the only effect of

margins here is to tighten the seller’s participation constraint, they are not used. Expected

transfers are zero and there are no rents to the protection seller. The seller pays the buyer

if θ̃ =
¯
θ and vice versa if θ̃ = θ̄. The payments are proportional to the size of the position I

and to its riskiness, measured by ∆θ.

It is optimal for the protection buyer to demand effort after both signals. He is fully

insured and the seller’s assets are safe so there is no counterparty risk. If there was no

effort, the buyer would be exposed to counterparty risk and full insurance would no longer

be possible.

Finally, note that the values of the transfers given in the proposition confirms our initial

claim that, under our assumption that AR > I∆θ, the limited liability condition does not

bind.
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4 Unobservable effort, no margins

4.1 Effort after both signals

We now turn to the case in which the effort level of the protection seller is not observable.

In this section, we characterize the optimal contract assuming that margins are not used,

α = 0. This provides a useful benchmark to assess the effect of margins on incentives in

Section 6.

We first consider a contract that induces effort of the seller after both a good and a bad

signal.

As the protection buyer expects the seller to always exert effort and control the risk of

her balance sheet, R̃ (1) = R. Hence, the contract does not need to be contingent on R̃.

Thus, the protection buyer solves (1) subject to (2) and the seller’s incentive compatibility

constraints. Since the signal about the risk θ is observed before the effort decision is made,

the incentive constraints are conditional on the realization of the signal.

Suppose a good signal, s̃ = s̄, is observed. Then, the incentive-compatibility constraint

is given by

π̄[AR− τ(θ̄, s̄)] + (1− π̄)[AR− τ(
¯
θ, s̄)] ≥

π̄[p(AR− τ(θ̄, s̄))] + (1− π̄)[p(AR− τ(
¯
θ, s̄))] +BA

The expression on the right-hand side is seller’s (out-of-equilibrium) expected payoff if she

does not exert effort. With probability 1 − p, the seller defaults and she cannot make any

positive payment to the protection buyer. The buyer, in turn, has no interest in making a

payment to the seller since it would make it more difficult to satisfy the incentive constraint.

Hence τ(θ̃, s̃ |default) = 0. The incentive-compatibility constraint after a bad signal, s̃ =
¯
s,

is derived analogously.
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Simplifying the incentive constraint for each realization of the signal, we get:

P ≥ π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄)

P ≥
¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s)

where

P = A

(
R− B

1− p

)
(3)

denotes “pledgeable income” (as in Tirole, 2005). Available pledgeable income puts an upper

bound on the expected transfer to the protection buyer, conditional on the observed signal.

Note that P > 0 since we assumed (1− p)R > B.

It will be useful to introduce the following notation for the expected transfer conditional

on the signal:

τ̄ ≡ E[τ |s̄] = π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄) (4)

¯
τ ≡ E[τ |̄s] =

¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s). (5)

The incentive constraints become

P ≥ τ̄ (6)

P ≥
¯
τ (7)

and the participation constraint (2) becomes

0 ≥ prob[
¯
s]

¯
τ + prob[s̄]τ̄ (8)

Lemma 1 (First-best attainable) When effort is not observable and the signal is infor-

mative, the first-best can be achieved if and only if the protection seller has enough pledgeable

income, i.e., for P > (π −
¯
π)I∆θ = I(E[θ̃]− E[θ̃|̄s]).
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For sufficiently high pledgeable income levels, incentive-compatibility constraints are not

binding and the first-best allocation can be reached even when effort is not observable. The

threshold level of pledgeable income beyond which the first-best is attainable, (π −
¯
π)I∆θ,

is proportional to the size of the position I, to its riskiness ∆θ, and to the informativeness of

the signal λ (which induces a higher wedge between the prior and the updated probability).

We can state the following corollary.

Corollary 1 When the signal is uninformative, the first-best is always reached: P > (π −

¯
π)I∆θ = 0.

Consider the case when the signal is informative and the pledgeable income is small

enough so that the first-best is not attainable. To ensure that the protection seller always

exerts effort, the optimal contract must satisfy two incentive-compatibility constraints. The

next lemma states that only one of them will be binding.

Lemma 2 (Incentives given the signal) When effort is not observable and the first-best

is not attainable, P < (π−
¯
π)I∆θ, the incentive constraint after a good signal is slack whereas

the incentive constraint after a bad signal is binding.

Ex ante, before the signal is observed, the derivative position is neither an asset nor a

liability for the protection seller. After observing a good signal about the underlying risk,

the position is more likely to be an asset for the seller. He is more likely to be paid by the

buyer than the other way around. Thus, good news do not generate incentive problems.

Negative news, on the other hand, make it more likely that the position moves against the

seller. Now it is the seller who is more likely to pay the buyer. For P < (π −
¯
π)I∆θ, this

undermines her incentives to exert effort. She has to bear the full cost of effort while the

benefit accrues in part to the protection buyer. This is reminiscent of the debt-overhang

effect (Myers, 1977). The derivative position contains hidden leverage that affects seller’s

incentives to control her balance sheet risk when she has limited pledgeable income.

The following proposition characterizes the optimal contract with effort after both signals.
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Proposition 2 (Optimal contract with risk-control) When effort is not observable and

the first-best is not attainable, P < (π−
¯
π)I∆θ, the optimal contract that induces effort after

both signals provides full insurance conditional on the signal and is actuarially fair. The

transfers are given by:

τSB,e=1(θ̄, s̄) = −(1− π̄)I∆θ − prob[
¯
s]

prob[s̄]
P = I(E[θ̃|s̄]− θ̄)− prob[

¯
s]

prob[s̄]
P < 0

τSB,e=1(
¯
θ, s̄) = π̄I∆θ − prob[

¯
s]

prob[s̄]
P = I(E[θ̃|s̄]−

¯
θ)− prob[

¯
s]

prob[s̄]
P > 0

τSB,e=1(θ̄,
¯
s) = −(1−

¯
π)I∆θ + P = I(E[θ̃|̄s]− θ̄) + P < 0

τSB,e=1(
¯
θ,

¯
s) =

¯
πI∆θ + P = I(E[θ̃|̄s]−

¯
θ) + P > 0

As in the first-best contract, the participation constraint binds and there are no rents to

the protection seller. Expected transfers are zero so that the contract is actuarially fair.

The key difference to the first-best contract is that the transfers now depend on the

signal:

τSB,e=1(θ̃,
¯
s) < τFB(θ̃,

¯
s) = τFB(θ̃, s̄) < τSB,e=1(θ̃, s̄)

To preserve the seller’s incentives to exert effort, the buyer must reduce the hidden leverage

by accepting incomplete risk-sharing. In particular, the incentive-compatible amount of

insurance is smaller following a bad signal. Hence, the protection buyer must bear signal

risk. Correspondingly, the protection seller must be left with some rent after a bad signal in

order to induce effort. The protection buyer “reclaims” this rent after a good signal so that

the expected rent to the seller is zero.8

Conditional on the signal, the optimal contract provides full insurance against the un-

derlying risk θ̃:

τ(
¯
θ, s̄)− τ(θ̄, s̄) = τ(

¯
θ,

¯
s)− τ(θ̄,

¯
s) = I∆θ > 0 (9)

Since there is full insurance conditional on the signal, we can rewrite the objective function

8Interpreting signals as types, there is then cross-subsidization between types.
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of the risk-averse protection buyer (1) as

prob[
¯
s]u(C + IE[θ|̄s] +

¯
τ) + prob[s̄]u(C + IE[θ|s̄] + τ̄) (10)

where we have used (4) and (5).

Figure 2 illustrates our results so far in the contract space (
¯
τ, τ̄). The relevant part of

the contract space is when
¯
τ ≥ 0 (x-axis) and when

¯
τ ≤ 0 (y-axis). After a bad signal the

protection seller is more likely to pay the protection buyer than vice versa. The opposite

holds after a good signal.

Insert Figure 2 here

The participation constraint of the protection seller (8) is a line through the origin with

slope −prob[
¯
s]

prob[s̄]
. The protection seller agrees to any contract that lies on or below this line.

Contracts that lie on the line are actuarially fair since expected transfers are zero. The slope

gives the ”relative price” at which the risk-neutral protection seller is willing to exchange

expected transfers after a good and a bad signal.

The indifference curves corresponding to (10) are decreasing, convex curves in the contract

space (
¯
τ, τ̄).9 The utility of the protection buyer increases as he moves to the north-east in

the figure.

The first-best allocation is given by point A where the indifference curve of the protection

buyer is tangent to the participation constraint of the protection seller. The first-best alloca-

tion achieves full insurance. In the first-best, transfers are independent from the realization

of the signal for a given realization of θ, i.e., τ(θ, s̄) = τ(θ,
¯
s) for all θ. Using (4), (5) and

(9), such transfers yield

τ̄ = −I(E[θ̃|s̄]− E[θ̃|̄s]) +
¯
τ (11)

9The slope of the indifference curve is given by dτ̄
d
¯
τ = −prob[

¯
s]

¯
u′

prob[s̄]ū′ < 0, where
¯
u′ ≡ u′(C + IE[θ|̄s] +

¯
τ) and

ū′ ≡ u′(C + IE[θ|s̄] + τ̄). The change in the slope is d2τ̄
d
¯
τ2 = − prob[

¯
s]

¯
u′′ū′

(prob[s̄]ū′)2 > 0.
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Thus, in the (
¯
τ, τ̄) plane, these transfers lie on the 45o line that intersects the x-axis at

¯
τ = I(E[θ̃|s̄]− E[θ̃|̄s]) and that intersects the participation constraint at point A.

Point B illustrates the optimal contract with effort. The vertical line that intersects the

x-axis at
¯
τ = P represents the incentive constraint. The protection seller only exerts effort

after a bad signal if the contract lies on or to the left of the line. The figure is drawn for

P < I(E[θ̃] − E[θ̃|̄s]) so that the first-best allocation is not attainable when effort is not

observable (Lemma 1). The contract achieving the highest utility for the protection buyer

lies at the intersection of the incentive and the participation constraint. He is worse off than

with the first-best allocation. The indifference curve passing through B lies strictly below

the one passing through A.

4.2 No effort after a bad signal

The protection buyer may find the reduced risk-sharing in the contract with effort after both

signals too costly. He may instead choose to accept risk-taking by the protection seller in

exchange for more sharing of the risk θ. Since it is always in the interest of the seller to exert

effort after a good signal, risk-taking can only occur after a bad signal. In this subsection, we

characterize the optimal contract with effort after good news and no effort after bad news.

The objective function of the protection buyer is then given by:

max
τ(θ̄,s̄),τ(

¯
θ,s̄),τ(θ̄,

¯
s),τ(

¯
θ,

¯
s)
πλu(C + Iθ̄ + τ(θ̄, s̄)) + (1− π)(1− λ)u(C + I

¯
θ + τ(

¯
θ, s̄)) (12)

+π(1− λ)[pu(C + Iθ̄ + τ(θ̄,
¯
s)) + (1− p)u(C + Iθ̄)]

+(1− π)λ[pu(C + I
¯
θ + τ(

¯
θ,

¯
s)) + (1− p)u(C + I

¯
θ)]

The contract entails risk-taking following a bad signal. With probability 1− p the seller

may default. The seller’s default is a contractible event and it is (privately) optimal to set

the transfer equal to zero in that case.10

10The transfer can only be from the buyer to the seller but any transfer is wasted due to the seller’s default.
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The incentive-compatibility constraints are given by

P ≥ τ̄ (13)

P <
¯
τ (14)

The seller exerts effort after a good signal. Following a bad signal, she prefers to run the

risk of default when the expected transfers to the buyer are sufficiently high.

The seller’s participation constraint is

prob[s̄](AR− τ̄) + prob[
¯
s][p(AR−

¯
τ) + AB] ≥ AR

or, equivalently,

−prob[
¯
s](1− p)P ≥ prob[s̄]τ̄ + prob[

¯
s]p

¯
τ (15)

The expected transfer from the seller to the buyer (right-hand side) is negative. If seller

enters the position, she must be compensated for the potential loss of pledgeable income

due to the lack of effort after bad news (left-hand side). Note that higher pledgeable income

makes it more difficult for a protection seller to accept a contract with no effort. Higher

returns on seller’s assets AR increase the outside opportunity of the seller, and they may

not materialize after entering the contract. Similarly, a smaller private benefit B reduces

the value of the contract by reducing the benefit of not exerting effort after a bad signal. An

implication is that apparently expensive derivative contracts sold by well established names

(high P) are an early warning of future risk-taking.11

The following proposition characterizes the optimal contract with effort after a good

signal and no effort after a bad signal.

A positive transfer from the buyer in the default state may, however, be optimal from a social point of view.
Such a transfer induces the buyer to internalize the costs stemming from the risk-taking by the seller. We
return to this issue in Section 7.

11This is reminiscent of Biais, Rochet and Woolley (2009) although the mechanism is different. In that
paper, large rents are a precursor of risk-taking. When rents become too large, investors prefer to give up
on incentives and accept risk-taking. In our analysis, however, the protection seller never earns rents.
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Proposition 3 (Optimal contract with risk-taking) When effort is not observable and

the first-best is not attainable, P < (π −
¯
π)I∆θ, the optimal contract with risk-taking after

a bad signal provides full insurance conditional on no default and is actuarially unfair. The

transfers are given by:

τ e=1,e=0(θ̄, s̄) = τ e=1,e=0(θ̄,
¯
s) = − (1− π) I∆θ

1− prob[
¯
s|̄θ](1− p)

1− prob[
¯
s](1− p)

− Pprob[
¯
s](1− p)

1− prob[
¯
s](1− p)

< 0

τ e=1,e=0(
¯
θ, s̄) = τ e=1,e=0(

¯
θ,

¯
s) = πI∆θ

1− prob[
¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

− Pprob[
¯
s](1− p)

1− prob[
¯
s](1− p)

> 0

Again, there are no rents to the protection seller (the participation constraint is binding).

The seller pays the buyer if θ̃ =
¯
θ and vice versa if θ̃ = θ̄:

τ e=1,e=0(
¯
θ, s̃) > 0 > τ e=1,e=0(θ̄, s̃)

There are three differences between the optimal contract with and without effort after

bad news. First, the contract with risk-taking does not react to the signal:

τ e=1,e=0(θ̃, s̄) = τ e=1,e=0(θ̃,
¯
s)

As long the protection seller does not default, the consumption of the buyer is equalized

across states (as in the first-best contract). Second, unlike in the contract with effort, the

buyer is now exposed to counterparty risk. He is completely uninsured in the default state.

Third, the contract with no effort after a bad signal is not actuarially fair since expected

transfers are not equal to zero.

Figure 3 illustrates the optimal contract without effort after a bad signal. The optimal

allocation is given by point C where the participation constraint and the indifference curve

that both account for the possibility of default are tangent. Compared to the case with

effort, the line representing the participation constraint is less steep. The protection seller

requires less compensation in terms of τ̄ for a higher expected transfer
¯
τ since she sometimes
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defaults, in which case she does not have to make this transfer. The line also no longer

intersects the y-axis at zero. Even if the protection seller made no transfer to the protection

buyer after a bad signal, she would still require a transfer from him to accept the contract.

She must be compensated for the loss of pledgeable income due to the lack of effort after

bad news. The participation constraint without effort intersects the one with effort at point

B where
¯
τ = P .

Insert Figure 3 here

The utility of the protection buyer (12) in terms of expected transfers conditional on the

signal is

prob[s̄]u(C + IE[θ̃|s̄] + τ̄) + prob[
¯
s]
[
pu(C + IE[θ̃|̄s] +

¯
τ) + (1− p)E[u(C + Iθ̃)|̄s]

]

After a bad signal, the protection buyer does not receive the transfer with probability 1− p

and is fully exposed to the risk θ conditional on the bad signal.

The possibility of default of the protection seller lowers the slope of the indifference curves

of the protection buyer. For any transfer
¯
τ he receives, he is now less willing to compensate

the protection seller by paying her τ̄ since she may default, in which case he does not receive

¯
τ .12

When the protection seller exerts no effort after a bad signal, the protection buyer is

exposed to counterparty risk but is fully insured against signal risk. The point C therefore

lies on the 45o line as contracts on this line do not depend on the signal (see equation (11)).

Since the point C lies to the right of the vertical line through
¯
τ = P , the incentive constraint

(14) is satisfied.

12Formally, the slope of the indifference curve is now given by dτ̄
d
¯
τ = −prob[

¯
s]p

¯
u′

prob[s̄]ū′ .
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4.3 Risk-sharing and risk-taking

The contract with effort after both signals entails limited risk-sharing but no risk-taking,

while the contract with no effort after a bad signal entails full risk-sharing but allows risk-

taking after bad news. In this section, we examine under what conditions it is privately

optimal to allow risk-taking.

Proposition 4 (Endogenous counterparty risk) Suppose effort is not observable and

the first-best is not attainable, P < (π −
¯
π)I∆θ. There exists a threshold level of pledgeable

income P̂ such that the contract with risk-control is optimal if and only if P ≥ P̂. If the

probability of default is sufficiently small, P̂ > 0.

The key factor in the choice between the optimal contract with risk-control and with risk-

taking is whether counterparty or signal risk is more costly for the protection buyer. For

low levels of pledgeable income, the moral hazard problem is severe. Providing incentives

to avoid risk-taking after a bad signal, requires a considerable reduction in hidden leverage.

The buyer then has to bear a lot of signal risk. If, at the same time, default is unlikely (p

is high), the counterparty risk under the risk-taking contract is small. It is then optimal for

the protection buyer to allow risk-taking by the protection seller.

Counterparty risk thus arises endogenously due to moral hazard. In particular, counter-

party risk occurs when the probability of default 1−p is small. Note that pledgeable income

P is increasing in the return of seller’s assets, R. Hence, privately optimal risk-sharing

contracts are more likely to allow risk-taking in an environment of low returns.

5 Implementation

In this section we examine how the optimal contract τ(θ̃, s̃) can be implemented using forward

contracts.
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5.1 First-Best

According to Proposition 1 the optimal contract does not depend on the signal s when effort

is observable. A forward written on the buyer’s risk θ is therefore enough. In order for a

forward to implement the payments specified by the optimal contract, we must have

qθ(Fθ − θ̄) = I(E[θ̃]− θ̄)

qθ(Fθ −
¯
θ) = I(E[θ̃]−

¯
θ),

where Fθ is the price of the forward and qθ is the quantity bought. Solving for qθ and Fθ

yields

qθ = I

Fθ = E[θ̃]

The protection buyer sells a forward on the risk θ. The amount sold fully covers the

size of the risky position I. The price of the forward is equal to the expected value of the

underlying risk.

5.2 Risk-control

The optimal contract that preserves the incentives of the protection seller to control her

balance sheet risk depends on the risk θ and on the advance information s about it (see

Proposition 2). A “plain vanilla” forward cannot deliver such payments. Moreover, the

optimal contract eliminates rents for the seller by enabling cross-subsidization across signals.

With a simple forward such cross-subsidization is not feasible and the protection seller would

obtain rents.

But a combination of two forwards can implement the optimal contract that preserves

the protection sellers’ incentives. One forward (qθ, Fθ) is written, as before, on the risk θ.
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The other forward (qs, Fs) is written on E[θ̃|s], the expected value of the risk θ conditional

on the signal s. Writing such a forward is possible since the signal s is contractible and the

probability distributions for s and θ are known. Suppose, for example, that the buyer’s risk

θ stems from illiquid loans and the advance information consists of an indicator of business

conditions, e.g., a survey of entrepreneurs. Then one forward specifies payments according

to the realization of loan defaults and the other forward specifies payments according to the

outcome of the survey.

In order to implement the optimal contract, the payments from the two forwards must

satisfy

qθ(Fθ − θ̄) + qs(Fs − E[θ̃|s̄]) = I(E[θ̃|s̄]− θ̄)− prob[
¯
s]

prob[s̄]
P

qθ(Fθ −
¯
θ) + qs(Fs − E[θ̃|s̄]) = I(E[θ̃|s̄]−

¯
θ)− prob[

¯
s]

prob[s̄]
P

qθ(Fθ − θ̄) + qs(Fs − E[θ̃|̄s]) = I(E[θ̃|̄s]− θ̄) + P

qθ(Fθ −
¯
θ) + qs(Fs − E[θ̃|̄s]) = I(E[θ̃|̄s]−

¯
θ) + P .

Solving for the quantities of the forwards yields

qθ = I

qs = I

(
P

I

1

E[θ̃]− E[θ̃|̄s]
− 1

)

As in the implementation of the First-Best, the protection buyer sells a forward on his

risk θ and the amount of protection fully covers the size of his position. In addition, he

buys a forward on the signal risk s. When the First-Best is not reachable, the expression is

round brackets is negative since there is not enough pledgeable income to support the hidden

liability embedded in the risk-sharing contract (Lemma 1).
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Any combination of forward prices satisfying

Fθ + Fs

(
P

I

1

E[θ̃]− E[θ̃|̄s]
− 1

)
=
P
I

E[θ̃]

E[θ̃]− E[θ̃|̄s]

implements the optimal contract. When the price of the price of the forward on θ is equal

to the expected value of the risk, Fθ = E[θ̃], then the prices of the two forwards are equal,

Fs = E[θ̃]. If the forward on θ is cheap, Fθ < E[θ̃], then the forward on s is expensive,

Fs > E[θ̃].

5.3 Risk-taking

The optimal contract with risk-taking by the protection seller does not depend on the signal

(see Proposition 3). It can therefore be implemented with a single forward provided that it

has the added feature of freeing the protection buyer from the obligation to honor the forward

if the seller defaults. This provision is needed since the seller’s default is a contractible event

and any payment from the buyer to the seller is wasted in default.

The payments from the forward must satisfy

qθ(Fθ − θ̄) = I(E[θ̃]− θ̄)1− prob[
¯
s|̄θ](1− p)

1− prob[
¯
s](1− p)

− Pprob[
¯
s](1− p)

1− prob[
¯
s](1− p)

qθ(Fθ −
¯
θ) = I(E[θ̃]−

¯
θ)

1− prob[
¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

− Pprob[
¯
s](1− p)

1− prob[
¯
s](1− p)

,

which yields the following price and quantity for the forward:

qθ = I
1− prob[

¯
s|̄θ](1− p)

1− prob[
¯
s](1− p)

Fθ = E[θ̃]− P
I

prob[
¯
s](1− p)

1− prob[
¯
s](1− p)

The amount sold by the protection buyer no longer fully covers the size of his position,

qθ < I, even though he is fully hedged against the risk θ (Proposition 3). However, the buyer
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is exposed to counterparty risk. Moreover, he has to sell the forward at the discount relative

to the expected value of the underlying risk. This discount is necessary to compensate the

protection seller for the loss of (pledgeable) income in default. The discount depends on the

amount of pledgeable income relative to the size of the buyer’s position and the probability

of seller’s default.

6 Margins

In this section, we analyze the incentive effects of margins. In the case of the contract with

effort, when risk-sharing is limited by the incentive constraint of the seller, we show how

margins can help increase the amount of insurance for the protection buyer. In the case of

the contract with risk-taking, when the buyer is exposed to counterparty risk, we examine

the role of margins in providing insurance against the seller’s default.

6.1 Margins and risk-control

We know that the optimal contract will provide full insurance to the protection buyer con-

ditional on the signal. Thus, we can state his objective function in terms of the expected

transfers conditional on the signal. When the protection seller exerts effort, she does not de-

fault and the margin need not be transferred to the protection buyer. His objective function

therefore is given by

max
α,τ̄,

¯
τ

prob[s̄]u(C + IE[θ̃|s̄] + τ̄) + prob[
¯
s]u(C + IE[θ̃|̄s] +

¯
τ).

We also know that the incentive constraint of the seller does not bind after a good signal.

Hence, the protection buyer will not make a margin call in this case. However, the buyer

may want to call a margin after a bad signal when seller’s incentives to exert effort may be
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jeopardized. The seller’s participation constraint is thus given by:

prob[s̄]AR + prob[
¯
s] [αA+ (1− α)AR]− E[τ ] ≥ AR

or, equivalently,

E[τ ] ≤ αA (1−R) prob[
¯
s] (16)

The expression on the right-hand side is negative and represents the opportunity cost of

depositing cash rather than keeping it on the balance sheet after a bad signal. The seller

forgoes the net return of assets over cash, R − 1. Placing a higher margin α makes it more

difficult for the protection seller to accept the contract. The opportunity cost of the margin

makes the contract actuarially unfair (expected transfers are no longer equal to zero).

The incentive-compatibility constraint after a bad signal is given by:

αA+ (1− α)AR−
¯
τ ≥ p [αA+ (1− α)AR−

¯
τ ] + (1− α)BA

If the seller does not exert effort (right-hand side), she earns the private benefit B only on

the assets she still controls. There is no private benefit associated with the cash deposited

with the clearing house. Higher margins thus reduce the private benefit of risk-taking: the

cash is ring-fenced from moral hazard. In case of default, the seller loses the cash deposited

as it is transferred to the buyer. We can re-write the incentive constraint as

αA+ (1− α)P ≥
¯
τ (17)

where P denotes, as before, the pledgeable income. For A > P , the margin relaxes the

incentive constraint.

Let g denote the fraction of assets that are pledgeable, g ≡ P
A

. The following proposition

characterizes the optimal contract with margins and risk-control.
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Proposition 5 (Optimal margins with risk-control) Let ū′(τ̄) and
¯
u′(

¯
τ) denote the buyer’s

marginal utilities conditional on the good and the bad signal, respectively. Margins are used,

α∗ > 0, if and only if:

¯
u′(

¯
τ(α∗))

ū′(τ̄(α∗))
≥ 1 +

R− 1

1− g
(18)

with equality for 0 < α∗ < 1. Margins are not used, α∗ = 0, if the reverse inequality holds in

(18) at α = 0. The expected transfers are given by:

¯
τ = α∗A+ (1− α∗)P

τ̄ = −prob[
¯
s]

prob[s̄]
[α∗AR + (1− α∗)P ]

The benefit of margins is improved risk-sharing via the transfers τ̄(α∗) and
¯
τ(α∗). The

margin itself is never paid to the the protection buyer since the protection seller does not

default when she exerts effort. The first-best would be obtained when ¯
u′(

¯
τ)

ū′(τ̄)
= 1 so that there

is full insurance against signal risk. In the first-best,

¯
τ − τ̄ = I(E[θ̃|s̄]− E[θ̃|̄s]). (19)

But to preserve the seller’s incentives to exert effort when the first-best is not attainable,

the protection buyer must bear signal risk and the left-hand side of (19) is bigger than the

right-hand side. Since ∂τ̄
∂α∗

< 0 and
∂
¯
τ

∂α∗
> 0, higher margins reduce the left-hand side, moving

the transfers closer to full insurance.

The cost of margins is that they tighten the participation constraint (16) and make the

contract with effort actuarially unfair. The optimal margin balances enhanced insurance

against signal risk and actuarial fairness. The right-hand side of (18) gives the rate at which

the trade-off occurs. The numerator of the fraction, R−1, is the opportunity cost of foregone

asset return causing the actuarial unfairness of the contract. The denominator measures the

severity of the incentive problem that the margin can relax. It decreases when there is higher
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pledgeable income per unit of capital, g. If g ≥ 1 so that P > A, margins cannot relax the

incentive constraint (17) and offer no benefit. We thus have the following result.

Corollary 2 When the pledgeable income is higher than the assets in place, g ≥ 1, margins

are not used, α∗ = 0.

Figure 4 illustrates the case with margins and risk-control.

Insert Figure 4 here

The margin affects the participation and incentive constraint but leaves the objective

function of the protection buyer unchanged. The straight line from point B to point D

illustrates how the margin changes the set of feasible contracts. The line is the parametric

plot of the binding participation and incentive constraints as α varies from 0 to 1:

prob[
¯
s]

¯
τ + prob[s̄]τ̄ = αA (1−R) prob[

¯
s]

¯
τ = αA+ (1− α)P

The point B represents the optimal contract with effort and no margin (see Section 4.1).

The optimal margin α∗ is given by the point of tangency of the protection buyer’s indif-

ference curve to the line BD (point E).13

The slope of the line BD gives the relative price at which the protection seller is willing

to exchange the transfers
¯
τ and τ̄ when margins are used, α > 0. The slope is steeper

than in the case without margins (the line through points B and A) as long as R > 1. The

protection seller requires more compensation in terms of τ̄ for a higher expected transfer
¯
τ

since depositing cash carries an opportunity cost.

13At the point of tangency, we have −prob[
¯
s]

¯
u′

prob[s̄]ū′ = −prob[
¯
s]

prob[s̄] −
(R−1)prob[

¯
s]

(1−g)prob[s̄] . Multiplying both sides of the

equality with −prob[s̄]
prob[

¯
s] recovers condition (18) for α∗ > 0.
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6.2 Margins and risk-taking

If the protection seller engages in risk-taking, she defaults with probability 1 − p. If she

defaults, the margin is transferred to the protection buyer.

The objective function of the protection buyer is now given by

max
α,τ̄,

¯
τ

prob[s̄]u(C+IE[θ̃|s̄]+ τ̄)+prob[
¯
s]
[
pu(C + IE[θ̃|̄s] +

¯
τ) + (1− p)E[u(C + Iθ̃ + αA)|̄s]

]

In case the protection seller defaults, the protection buyer obtains the cash deposit, αA.

The participation constraint of the protection seller is given by

prob[
¯
s] [αA (1−R)− (1− p)(αA+ (1− α)P)] ≥ prob[s̄]τ̄ + prob[

¯
s]p

¯
τ. (20)

The left-hand side is the sum of the opportunity cost due to the foregone asset return R− 1

and the loss conditional on default. The right-hand side is the expected transfer from the

protection seller to the buyer. It is the same as in the case without margins (see (15)).

The following proposition characterizes the optimal contract with margins and risk-taking

after a bad signal.

Proposition 6 (Optimal margins with risk-taking) Let E [u′d] and u′nd denote the buyer’s

(expected) marginal utilities when the seller defaults and when she does not, respectively.

Margins are used, α∗ > 0, if and only if:

(1− p)E[u′d(α
∗)|̄s]

u′nd(α
∗)
≥ R− 1 + (1− p)(1− g) (21)

with equality for 0 < α∗ < 1. Margins are not used, α∗ = 0, if the reverse inequality holds in

(21) at α = 0. The expected transfers are given by (19) and

¯
τ = −α∗prob[

¯
s] [AR− P + p(A− P)]

1− prob[
¯
s](1− p)

+
prob[s̄]I(E[θ̃|s̄]− E[θ̃|̄s])− prob[

¯
s](1− p)P

1− prob[
¯
s](1− p)

(22)
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As in the risk-taking contract without margins, the protection buyer gets full insurance

when the seller does not default. In this case, his consumption is given by C + I
¯
θ +

¯
τ(α∗)

where the latter is given by (22). He is, however, exposed to counterparty risk since the

seller may default with probability 1− p after a bad signal.

The benefit of a margin under the risk-taking contract is the insurance it provides against

counterparty risk (left-hand side of (21)). The wedge between the marginal utilities under

default and no default is reduced. Margins increase the buyer’s expected consumption if the

seller defaults, which happens with probability 1 − p after a bad signal. At the same time,

they reduce his consumption when there is no default since
∂
¯
τ

∂α∗
< 0. The protection buyer

requires a smaller transfer after a bad signal since this is the state in which the margin may

be paid to him.

The cost of margins has two components. First, there is the opportunity cost, R − 1.

Second, there is the loss of income in case of default. The optimal margin under risk-taking

balances these costs with the benefit of protecting the buyer from counterparty risk.

6.3 Margins, risk-sharing and risk-taking

Margins can be implemented as escrow accounts set up by a protection buyer or via a market

infrastructure such as a central counterparty (CCP). It is privately optimal to use margins

whenever α∗ > 0. When the contract with margins entails risk-control, the margin acts as

a commitment device for the protection seller not to take risks once she observes negative

news about her hedging position. When the contract entails risk-taking, the margin protects

the buyer against the default of the seller.

The choice between the contract with margins and risk-control and the contract with

margins and risk-taking depends again on whether counterparty or signal risk is more costly

for the protection buyer. As in Section 4.3, the contract with risk-taking may be chosen

when pledgeable income is low and the moral hazard problem is severe.

The overall effect of margins on risk-taking, and hence counterparty risk, is ambiguous.

27



On the one hand, margins reduce the signal risk faced by the buyer and make risk-control by

the seller more attractive. On the other hand, margins protect the buyer from counterparty

risk and make risk-taking by the seller more attractive. If the latter effect is small, then

margins reduce the risk-taking effect of hedging. If the buyer benefits a lot from the insurance

against counterparty risk, then margins lead to more risk-taking.

7 Social optimality and regulation

Whenever the privately optimal contract entails risk control by the protection seller, her

assets are safe and there is no default. When the level of pledgeable income is low, the

privately optimal contract, however, entails risk-taking and counterparty risk (see Proposi-

tion 4). Risk-taking by financial institutions entails costs for third parties, e.g., bankruptcy

costs or disruptions in payment systems and interbank markets. To examine this possibility,

suppose that the default of the seller leads to losses L. The losses L are a measure of the

externality the default of a protection seller imposes on the financial system, i.e., L measures

the systemic importance of a financial institution. Since the seller is protected by limited

liability, she does not internalize its systemic relevance.14

Social (utilitarian) welfare is given by the sum of the buyer’s utility and the seller’s profits

net of losses L. Social welfare decreases with losses and there exists a threshold level of L,

L∗, such that for losses larger than L∗, social optimality requires the avoidance of risk-taking

even though it may be privately optimal. The conflict between private and social optimality

opens up the scope for regulating systemically relevant financial institutions that are engaged

in hedging.

One way to mitigate risk-taking incentives is to impose capital requirements on protection

sellers. For a given amount of hedging activities, extra capital strengthens their balance

14Another possibility is that L denotes the amounts of deposits if the protection seller is a commercial
bank. When the bank defaults since her hedging activities, undertaken for example by its investment banking
branch, induce her to take risks, deposits are either lost or, if insured, are paid by the government. In either
case, there is a cost L to third parties.
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sheets by increasing pledgeable income. This counters the hidden leverage embedded in

hedging. Thus, requiring financial institutions to hold capital in proportion to their derivative

exposures reduces risk-taking. By extension, (systemically relevant) financial institutions

that opt out of the capital requirement should not be allowed to undertake such activities.

Our analysis shows that financial market infrastructures have an important effect on sys-

temic risk. For example, the clearing of derivative contracts by a central counterparty (CCP)

makes margin requirements possible. As long as margins are privately optimal, the clearing

need not be mandated. As for the effect of margin requirements on risk-taking, we showed

that it is ambiguous. Margins make risk-taking by the protection seller less attractive but

they introduce complacency of the buyer by insuring him against seller default. If the former

effect dominates, margins and capital requirements are substitutes. Market infrastructures

then allow to economize on the use of costly capital. If the latter effect dominates, margins

and capital requirements are complements. In that case, market infrastructures must be

supported by additional regulation.

Mandating the clearing of derivatives through a CCP can also improve social welfare by

penalizing the protection buyer for his complacency about seller default. We showed that

it is privately optimal to have zero transfers in case the seller defaults (see the discussion

following equation (12)). When the losses L incurred by third parties are high, it is socially

optimal to have the buyer internalize the consequences of being complacent about the seller’s

risk-taking. One way to internalize the losses is to have the CCP collect a payment from the

buyer even if his counterparty is no longer around.

8 Extensions

In this section, we analyze the hedging contract with multiple protection sellers. We first

characterize the optimal contract when seller cannot contract each other. We then ana-

lyze reinsurance, i.e., the possibility that sellers write additional hedging contracts among
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themselves. We show that reinsurance is not feasible. We finally consider the possibility

of retrading, i.e., sellers are able to transfer all contractual obligations vis-a-vis the buyer

among themselves. We show that retrading undermines sellers’ incentives to control balance

sheet risk and argue that initial margins can restore incentives.

8.1 Multiple sellers

Suppose a protection buyer splits the hedging contract among several protection sellers. For

now, we assume that protection sellers cannot reinsure or sell off the original contract (we

will relax this assumption in the next sections).

We extend the benchmark model as follows: There are N identical, risk-neutral protection

sellers. At time t = 0, each protection seller has an amount A
N

of assets in place, which have

an uncertain per unit return R̃ at t = 2. If a seller does not control her balance sheet risk,

she defaults with probability 1−p. We assume that the default risk is a common or “macro”

shock that is non-diversifiable across sellers. If the risk materializes (with probability 1− p),

all sellers fail at the same time when not controlling balance sheet risk. Hence, risk-taking

among sellers amounts to taking perfectly correlated risks.

As before, the protection buyer solves

max
τ̄i,

¯
τi

prob[s̄]u(C + IE[θ̃|s̄] +
N∑
i=1

τ̄i) + prob[
¯
s]u(C + IE[θ̃|̄s] +

N∑
i=1

¯
τi),

where subscript i stands for protection seller i, i = 1, . . . , N . Seller i’s incentive constraints

are given by

Pi ≥ τ̄i and Pi ≥
¯
τi

where

Pi =
A

N

(
R− B

1− p

)
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is seller i’s pledgeable income.Seller i’s participation constraint is given by

E[τi] ≤ 0

We can now state the following proposition.

Proposition 7 (Multiple sellers) The optimal contract with multiple sellers, N > 1, that

maintains their incentives to control balance sheet risk is given by τ̄i = τ̄
N

and
¯
τi = ¯

τ

N
,

i = 1, . . . , N , where τ̄ and
¯
τ are the optimal expected transfers after a good and a bad signal,

respectively, for N = 1.

Protection sellers are risk-neutral and competitive. Summing up their (linear) participa-

tion and incentive constraints, the optimization problem with N protection sellers of size A
N

is equivalent to the problem with one seller of size A. In this sense, our model with a single

protection seller is representative of an entire sector.

8.2 Reinsurance

Suppose a protection buyer splits the hedging contract among two identical, risk-neutral

protection sellers as described in the previous section, i.e., N = 2. Each protection seller

holds a contract
(
τ̄
2
, ¯
τ

2

)
(see Proposition 7). We now allow for sellers to reinsure each other

after the contract with buyer τ is signed but before the signal s̃ about the return θ̃ is

observed.15 Denote the complete reinsurance contract between the two protection seller

as ρ(θ, s, R1, R2), where Ri is the return on the assets in place of seller i. We make the

convention that ρ > 0 means that seller 2 is paying seller 1.

For the sellers to agree on reinsurance, there must be gains from trade. Suppose without

loss of generality that seller 2 is reinsuring seller 1. After a bad signal, seller 2 therefore

15After the signal is observed, there is no scope for reinsurance since the position is no longer neutral.
After good news, the hedge is more likely to be an asset and a protection seller does not require reinsurance,
while after bad news, the hedge is more likely to be a liability and another protection seller is not willing to
provide reinsurance.
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expects having to pay seller 1,
¯
ρ > 0. Since seller 2 will not provide reinsurance if he expects

to lose money, it must be that E[ρ] ≤ 0, and hence ρ̄ < 0. According to Proposition 7, each

seller’s incentive constraint after a bad signal is binding, ¯
τ

2
= P2. An additional expected

payout after a bad signal,
¯
ρ > 0, induces seller 2 to shirk on her effort to control balance

sheet risk. Assuming for the moment that seller 1 does not shirk, the expected gain to seller

2 from providing reinsurance then is

prob[s̄] (−ρ̄) + prob[
¯
s]

[
AB

2
− (1− p)AR

2
+ (1− p)

(
¯
τ

2

)
+ p

(
−

¯
ρ
)]

The first term is the payment from seller 1 after a good signal. The term is squared brackets

is the gain after a bad signal. The gain has four components. First, seller 2 obtains the

private benefit of no longer controlling her balance sheet risk. Second, she defaults with

probability (1 − p) and loses her assets. However, she also gains by defaulting since she no

longer has to honor the original hedging contract with the buyer (this is the third term inside

the squared brackets). Finally, seller 2 does not default with probability p and makes the

payment to seller 1.

The expression for E[ρ] simplifies considerably since the optimal hedging contract be-

tween the buyer and a seller exactly balances the cost and benefit of shirking after a bad

signal. From the binding incentive constraint, we have ¯
τ

2
= A

2

(
R− B

1−p

)
, and thus,

prob[s̄] (−ρ̄) + prob[
¯
s]p
(
−

¯
ρ
)
. (23)

What is the expected gain from reinsurance to seller 1? Since we assumed that she does

not shirk, her expected gain from reinsurance is

prob[s̄] (ρ̄) + prob[
¯
s]p
(
¯
ρ
)
. (24)

Seller 1 receives the payment after a bad signal only if seller 2 has not defaulted, which
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happens with probability p.

Comparing (23) and (24), we conclude that there are no gains from reinsurance. When-

ever the expected gain for seller 2 is positive, it is negative for seller 1. The conclusion

extends to the case when seller 1 too shirks under reinsurance. The expressions (23) and

(24) for the gains to seller 2 and seller 1 remain unchanged since we assume that protection

sellers are exposed to a common macro shock if they fail to control their balance sheet risk.

All sellers default with probability 1 − p if they shirk on risk control after observing a bad

signal. The following proposition summarizes our result.

Proposition 8 (Reinsurance) The optimal hedging contract between a buyer and multiple

sellers that maintains their incentives to to control balance sheet risk leaves no room for

sellers to reinsure each other.

8.3 Retrading and initial margins

Suppose, as in the previous section, that a protection buyer splits the hedging contract

among two protection sellers. We now allow seller 1 to acquire the contract held by seller 2,

thus freeing seller 2 from all obligations stemming from the contract.

Before the signal s̃ about the return θ̃ is observed, seller 2 is indifferent between selling the

contract for a value of zero and keeping it since a seller’s participation constraint binds (see

Proposition 7). What is seller 1’s expected gain from acquiring seller 2’s contract at a price

of zero? Prior to acquiring seller 2’s contract, seller 1’s incentive constraint after observing

a bad signal was binding, ¯
τ

2
= P1 (see Proposition 7). Hence, increasing her position from

¯
τ

2
to

¯
τ induces seller 1 to no longer control her balance sheet risk. Her expected gain from

acquiring seller 2’s contract is:

prob[s̄]
(
− τ̄

2

)
+ prob[

¯
s]

[
AB

2
− (1− p)AR

2
+ (1− p)

(
¯
τ

2

)
+ p

(
−¯
τ

2

)]
.

The first term is the extra payment from the protection buyer to seller 1 after a good signal.
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The term is squared brackets is the gain after a bad signal. The gain has four components.

First, seller 1 obtains the private benefit of no longer controlling her balance sheet risk.

Second, she defaults with probability (1 − p) and loses her assets. However, she also gains

by defaulting since she no longer has to pay the protection buyer (this is the third term

inside the squared brackets). Finally, seller 1 does not default with probability p and has to

make the payment to the protection buyer that he would have obtained from seller 2 in the

absence of retrading.

Using ¯
τ

2
= P

2
= A

2

(
R− B

1−p

)
and E

[
τ
2

]
= 0 from the binding incentive and participation

constraints, seller 1’s gain simplifies to

prob[
¯
s] (1− p) P

2
> 0. (25)

The expected gain from acquiring the hedging contract arises from exploiting limited liability,

i.e., from taking risks after a bad signal and not having to pay the protection buyer with

probability 1− p. The following Proposition summarizes our result:

Proposition 9 (Retrading) Retrading the protection buyer’s hedging contract among the

sellers undermines their incentives to control balance sheet risk.

If protection sellers can retrade contracts, they have incentives to accumulate contracts

and build up hedging positions beyond their pledgeable income. Sellers take on concentrated

risks and benefit from the protection offered by limited liability.16

Requesting an initial margin restores protection sellers’ incentives to control their balance

sheet risk when retrading is possible. By preventing sellers from accumulating excessive

hedging positions, initial margins counter sellers’ desire to take on concentrated risks. The

margin must be deposited before the signal realizes since the scope for retrading exists only

then. This is in contrast to the variation margin, analyzed earlier, which is deposited after

16AIG’s conduct prior to the 2007 financial crisis, that is, the accumulation of a vast number of CDS
contracts, may have been an example of such behavior.

34



the signal realizes. An initial margin makes it costly for a seller to acquire another seller’s

contract since she has to liquidate some of her assets.

Consider again the case of two protection sellers. If both sellers retain their half of the

optimal contract,
(
τ̄
2
, ¯
τ

2

)
, an initial margin is not required. It is only when a seller wants

to accumulate a position that is larger than her pledgeable income, Pi = P
2

, that she must

put up an initial margin. We can compute the optimal amount, or the “haircut”, at which

a position in excess of
(
τ̄
2
, ¯
τ

2

)
should be margined. The cost of liquidating assets to comply

with the initial margin, denoted by α0, must be large enough to outweigh the gain from

retrading, which is given by equation (25):

prob[
¯
s] (1− p) P

2
≤ A

2
(R− 1)α0,

In equilibrium, the condition holds as an equality to minimize the opportunity cost of the

initial margin. Moreover, the size of a seller (1
2
) appears on both sides of the condition and

drops out. We therefore state the following result:

Proposition 10 (Initial margin) Initial margins maintain sellers’ incentives to control

balance sheet risk when retrading is possible. The optimal size of the initial margin (“hair-

cut”) is

α0 =
prob[

¯
s] (1− p) g
R− 1

,

where, as before, g ≡ P
A

, is the proportion of assets that are pledgeable.

We assumed that retrading allows protection sellers to free themselves from any contrac-

tual obligation towards the protection buyer. This is in line with the trading of contracts

on an exchange, which acts as a middle man between buyers and sellers. Buyers and sellers

do not contract with each other directly but instead contract with the exchange (or brokers

that are members of the exchange). It is the exchange (or its members) that is liable for

the contracts. It is also the exchange that can implement an initial margin to prevent the
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accumulation of excessive positions via trading. The size of the initial margin, or haircut,

should depend not only on the (negative signal) risk of the underlying position, prob[
¯
s], but

also on the characteristics of traders’ balance sheets, i.e., risk (1− p), net return (R− 1) and

pledgeability (g).

9 Conclusion

We consider a situation in which a protection seller offers a hedging contract to a protection

buyer. We show how this contract, designed to facilitate risk-sharing, can generate incentives

for risk-taking. When the position of the protection seller becomes loss-making, this creates

hidden leverage, discouraging the mitigation of risks in the seller’s core business. Such

elevated moral hazard raises the default risk of the protection seller and, correspondingly,

the counterparty risk for the protection buyer. Thus hedging can lead to systemic risk, in the

form of propagation of risk from derivative positions to the traditional business of financial

institutions.

We show that for well-capitalized institutions, margin requirements mitigate this problem,

by reducing the severity of the moral hazard problem. Initial margins act to discourage

retrading and accumulation of excessive positions, while variation margins serve to discourage

risk-taking incentives for a given position. Therefore, the establishment of CCPs can be part

of an appropriate regulatory response. But, our analysis implies that poorly capitalized firms

should be banned from the sale of such protection, even in markets with CCPs and margin

requirements.
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Appendix

Proof of Proposition 1

Let µ denote the Lagrange multiplier on the participation constraint (2). Let µ0 and µ1 be
the Lagrange multipliers on the feasibility constraints α ≥ 0 and α ≤ 1. The first-order
conditions with respect to transfers τ(θ̄, s̄), τ(

¯
θ, s̄), τ(θ̄,

¯
s), τ(

¯
θ,

¯
s) and margin α are given

by:

πλu′(C + Iθ̄ + τ(θ̄, s̄))− µπλ = 0

(1− π)(1− λ)u′(C + I
¯
θ + τ(

¯
θ, s̄))− µ(1− π)(1− λ) = 0

π(1− λ)u′(C + Iθ̄ + τ(θ̄,
¯
s))− µπ(1− λ) = 0

(1− π)λu′(C + I
¯
θ + τ(

¯
θ,

¯
s))− µ(1− π)λ = 0

µA (1−R) + µ0 − µ1 = 0

It follows that the marginal utility of the buyer of insurance is equalized across (θ̃, s̃)
states (full insurance) and that the participation constraint is binding:

ū′(τ(θ̄, s̄)) = ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s)) =

¯
u′(τ(

¯
θ, s̄)) = µ > 0 (A.1)

Since µ > 0 and 1− R < 0, it must be that µ0 > 0 and µ1 = 0. Hence, α = 0 must hold in
the optimum and margins are not used.

The optimal transfers are obtained by using the fact that the participation constraint is
binding and that consumption is the same across (θ̃, s̃) states.

Proof of Lemma 1

Let µs̄ and µ
¯
s denote the Lagrange multipliers on the incentive compatibility constraints (6)

and (7), respectively (µ again denotes the multiplier on the participation constraint (2)).
The first-order conditions with respect to transfers τ(θ̄, s̄), τ(

¯
θ, s̄), τ(θ̄,

¯
s) and τ(

¯
θ,

¯
s) are

given by:

πλu′(C + Iθ̄ + τ(θ̄, s̄))− µs̄π̄ − µπλ = 0

(1− π)(1− λ)u′(C + I
¯
θ + τ(

¯
θ, s̄))− µs̄(1− π̄)− µ(1− π)(1− λ) = 0

π(1− λ)u′(C + Iθ̄ + τ(θ̄,
¯
s))− µ

¯
s
¯
π − µπ(1− λ) = 0

(1− π)λu′(C + I
¯
θ + τ(

¯
θ,

¯
s))− µ

¯
s(1−

¯
π)− µ(1− π)λ = 0
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We re-write the first-order conditions as

ū′(τ(θ̄, s̄)) = µ+ µs̄
π̄

πλ
(A.2)

¯
u′(τ(

¯
θ, s̄)) = µ+ µs̄

1− π̄
(1− π)(1− λ)

(A.3)

ū′(τ(θ̄,
¯
s)) = µ+ µ

¯
s ¯

π

π(1− λ)
(A.4)

¯
u′(τ(

¯
θ,

¯
s)) = µ+ µ

¯
s

1−
¯
π

(1− π)λ
(A.5)

where we use a shorthand ū′(τ(θ̄, s̃)) to denote marginal utility in state θ̄ conditional on the
signal s̃ and, similarly,

¯
u′(τ(

¯
θ, s̃)) to denote marginal utility in state

¯
θ conditional on the

signal s̃.
Since

π̄

πλ
=

prob[θ̄|s̄]
prob[θ̄ ∩ s̄]

=
1

prob[s̄]

1− π̄
(1− π)(1− λ)

=
prob[

¯
θ|s̄]

prob[
¯
θ ∩ s̄]

=
1

prob[s̄]

¯
π

π(1− λ)
=

prob[θ̄|̄s]
prob[θ̄ ∩

¯
s]

=
1

prob[
¯
s]

1−
¯
π

(1− π)λ
=

prob[
¯
θ|̄s]

prob[
¯
θ ∩

¯
s]

=
1

prob[
¯
s]

holds, it follows that there is full risk-sharing conditional on the signal:

ū′(τ(θ̄, s̄)) =
¯
u′(τ(

¯
θ, s̄))

ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s))

As in the first-best case, we therefore have

τ(
¯
θ, s̄)− τ(θ̄, s̄) = τ(

¯
θ,

¯
s)− τ(θ̄,

¯
s) = I∆θ > 0 (A.6)

It follows that, conditional on the signal, the transfer to the buyer when the asset return is
low is higher than when the asset return is high, τ(

¯
θ, s̃) > τ(θ̄, s̃).

Next, we show that the participation constraint must bind. Suppose not, i.e. µ = 0.
Then, equations (A.2) and (A.3) imply that µs̄ > 0. Similarly, (A.4) and (A.5) imply that
µ

¯
s > 0. Both incentive constraints bind so that P = τ̄ =

¯
τ . Since the participation constraint

is slack, it must be that

0 > E[τ ] ≡ prob[s̄]τ̄ + prob[
¯
s]

¯
τ

= P (prob[s̄] + prob[
¯
s])

= P
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which contradicts P > 0. Hence, the participation constraint binds, E[τ ] = 0.
It follows that at least one incentive constraint must be slack. If not, then τ̄ =

¯
τ = P > 0,

which contradicts E[τ ] = 0.
Suppose both incentive constraints are slack, µs̄ = µ

¯
s = 0. Then, we obtain full insurance

as in (A.1) and the contract is given by proposition 1 (first-best). The conditions under which
the incentive constraints are indeed slack are given by:

P > π̄τFB(θ̄, s̄) + (1− π̄)τFB(
¯
θ, s̄) = (π − π̄)I∆θ

P >
¯
πτFB(θ̄,

¯
s) + (1−

¯
π)τFB(

¯
θ,

¯
s) = (π −

¯
π)I∆θ

When the signal is informative, λ > 1
2
, we have π̄ > π >

¯
π. The result in the lemma

follows.

Proof of Lemma 2

We have shown above that at least one incentive constraint must be slack. They cannot
both be slack since we assume that P < (π −

¯
π)I∆θ. We now show that it is the incentive

constraint following a bad signal that is binding. Suppose not, so that P = τ̄ > 0 >
¯
τ where

the last inequality follows from E[τ ] = 0. Then, µ
¯
s = 0 and µs̄ ≥ 0 and equations (A.2)

through (A.5) yield

ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s)) = µ ≤ ū′(τ(θ̄, s̄)) =

¯
u′(τ(

¯
θ, s̄))

Comparing the first with the third term and the second with the fourth term yields

τ(θ̄,
¯
s) ≥ τ(θ̄, s̄)

τ(
¯
θ,

¯
s) ≥ τ(

¯
θ, s̄)

Using τ(
¯
θ, s̃) > τ(θ̄, s̃) (equation (A.6)) and π̄ >

¯
π, we can write

0 < τ̄ ≡ π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄)

<
¯
πτ(θ̄, s̄) + (1−

¯
π)τ(

¯
θ, s̄)

≤
¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s) ≡

¯
τ

But
¯
τ < 0, a contradiction. Hence, only the incentive constraint after a bad signal binds.

Proof of Proposition 2

The optimal contract is given by the binding incentive constraint following a bad signal:

P =
¯
τ,

the binding participation constraint

prob[s̄]τ̄ + prob[
¯
s]

¯
τ = 0,
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and full risk-sharing conditional on the signal (A.6).

Proof of Proposition 3

Let µs̄ denote the Lagrange multiplier on the incentive constraint following a good signal and
let µ denote the multiplier on the participation constraint (15). The first-order conditions
with respect to transfers τ(θ̄, s̄), τ(

¯
θ, s̄), τ(θ̄,

¯
s) and τ(

¯
θ,

¯
s) are:

ū′(τ(θ̄, s̄)) = µ+
µs̄

prob[s̄]
(A.7)

¯
u′(τ(

¯
θ, s̄)) = µ+

µs̄
prob[s̄]

(A.8)

ū′(τ(θ̄,
¯
s)) = µ (A.9)

¯
u′(τ(

¯
θ,

¯
s)) = µ (A.10)

The last two conditions imply that the participation constraint binds as µ > 0. Moreover,
we again have full sharing of the θ̃ risk conditional on the signal, except for a default state:

ū′(τ(θ̄, s̄)) =
¯
u′(τ(

¯
θ, s̄))

ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s))

and hence
τ(

¯
θ, s̃)− τ(θ̄, s̃) = I∆θ > 0 (A.11)

Next, we show that the incentive constraint after a good signal (13) is slack, implying
µs̄ = 0. Suppose that the constraint is not slack and P = τ̄ <

¯
τ . Since P > 0, both expected

transfers are positive, which violates the participation constraint.
Since incentive constraints are slack, the first-order conditions become

ū′(τ(θ̄, s̄)) = ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s)) =

¯
u′(τ(

¯
θ, s̄)) = µ (A.12)

Conditional on no default, there is full insurance, as in the first-best case (A.1):

τ(θ̃, s̄) = τ(θ̃,
¯
s) (A.13)

The buyer is, however, exposed to counterparty risk.
The optimal contract with no effort after a bad signal is given by (A.12) and the binding

participation constraint. We now check under what condition the incentive constraint fol-
lowing a bad signal (14) is indeed slack. Starting with the binding participation constraint
and using (A.11) and (A.13), we get

−prob[
¯
s](1− p)P = prob[s̄][π̄τ(θ̄, s̄) + (1− π̄)τ(

¯
θ, s̄)] + prob[

¯
s]p[

¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s)]

= prob[s̄][τ(
¯
θ, s̄)− π̄I∆θ] + prob[

¯
s]p[τ(

¯
θ,

¯
s)−

¯
πI∆θ]

= τ(
¯
θ,

¯
s)[prob[s̄] + prob[

¯
s]p]− I∆θ[prob[s̄]π̄ + prob[

¯
s]p

¯
π]
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Using Bayes’ Rule and simplifying, we arrive at

−prob[
¯
s](1− p)P = τ(

¯
θ,

¯
s)[1− prob[

¯
s](1− p)]− I∆θπ[1− prob[

¯
s|θ̄](1− p)]

Hence,

τ(
¯
θ,

¯
s) = πI∆θ

1− prob[
¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

− P prob[
¯
s](1− p)

1− prob[
¯
s](1− p)

(A.14)

Since
¯
τ = τ(

¯
θ,

¯
s)−

¯
πI∆θ, for the incentive constraint after a bad signal to be slack, it must

be that
P < τ(

¯
θ,

¯
s)−

¯
πI∆θ

Substituting for τ(
¯
θ,

¯
s) and simplifying yields

P < (π −
¯
π)I∆θ − (1− p)I∆θ[πprob[

¯
s|θ̄]−

¯
πprob[

¯
s]]

or, equivalently,
P < (π −

¯
π)I∆θ

This is the same condition as in Lemma 1. The incentive constraint after a bad signal is
slack when the first-best is not attainable.

Proof of Proposition 4

The proof proceeds in three steps. First, we show that the expected utility of the contract
with effort after both signals is increasing in P :

∂EU e=1

∂P
= −prob[

¯
s]

prob[s̄]

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(

¯
θ, s̄))

]
+π (1− λ) ū′(τ(θ̄,

¯
s)) + (1− π)λ

¯
u′(τ(

¯
θ,

¯
s))

= prob[
¯
s]
[
ū′(τ(θ̄,

¯
s))− ū′(τ(θ̄, s̄))

]
> 0

since τ(θ̄,
¯
s) < τ(θ̄, s̄) due to the signal risk.

Second, we show that the expected utility of the contract with no effort following a bad
signal is decreasing in P :

∂EU e=1,e=0

∂P
= − prob[

¯
s] (1− p)

1− prob[
¯
s] (1− p)

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(

¯
θ, s̄))

+ π (1− λ) pū′(τ(θ̄,
¯
s)) + (1− π)λp

¯
u′(τ(

¯
θ,

¯
s))
]

= − prob[
¯
s] (1− p)

1− prob[
¯
s] (1− p)

[
π(λ+ p(1− λ))ū′(τ(θ̄, s̄))

+(1− π)((1− λ) + pλ)
¯
u′(τ(

¯
θ, s̄))] < 0

Third, we provide sufficient condition for EU e=1 (P = 0) < EU e=1,e=0 (P = 0) so that no
effort after a bad signal is optimal for low P .
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We have

EU e=1 (P = 0) = [πλ+ (1− π) (1− λ)]u (C + I
¯
θ + π̄I∆θ) + [π (1− λ) + (1− π)λ]×

u (C + I
¯
θ +

¯
πI∆θ)

= prob[s̄]u (C + I
¯
θ + π̄I∆θ) + prob[

¯
s]u (C + I

¯
θ +

¯
πI∆θ)

= prob[s̄]u(C + IE[θ̃|s̄]) + prob[
¯
s]u(C + IE[θ̃|̄s]) (A.15)

and

EU e=1,e=0 (P = 0) = (prob[s̄] + pprob[
¯
s])u

(
C + I

¯
θ + π

1− prob[
¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

I∆θ

)
+ (1− p)

[
π(1− λ)u(C + Iθ̄) + (1− π)λu(C + I

¯
θ)
]

= (prob[s̄] + prob[
¯
s]p)u

(
C + IÊ[θ̃]

)
+prob[

¯
s](1− p)

[
¯
πu(C + Iθ̄) + (1−

¯
π)u(C + I

¯
θ)
]

(A.16)

where
Ê[θ̃] = π̂θ̄ + (1− π̂)

¯
θ

and

π̂ = π
1− prob[

¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

Note that
π̄ > π̂ > π >

¯
π (A.17)

for p ∈ (0, 1). Note that π̄ = π̂ for p = 0 and that π̂ = π for p = 1. The first two inequalities
follow from the fact that prob[

¯
s] >prob[

¯
s|θ̄] for λ > 1

2
(informative signal). Hence,

1− prob[
¯
s|θ̄](1− p)

1− prob[
¯
s](1− p)

≥ 1

Combining (A.15) and (A.16), we have that no effort after a bad signal dominates effort
(when P = 0) if and only if

prob[s̄]u(C + IE[θ̃|s̄]) + prob[
¯
s]u(C + IE[θ̃|̄s])

< (prob[s̄] + prob[
¯
s]p)u(C + IÊ[θ̃]) + prob[

¯
s](1− p)EU

(
(C + Iθ̃)|̄s

)
where

EU
(

(C + Iθ̃)|̄s
)

=
¯
πu(C + Iθ̄) + (1−

¯
π)u(C + I

¯
θ)

After collecting terms, we have

prob[s̄]
[
u(C + IE[θ̃|s̄])− u(C + IÊ[θ̃])

]
+ prob[

¯
s]
[
u(C + IE[θ̃|̄s])− EU

(
(C + Iθ̃)|̄s

)]
< prob[

¯
s]p
[
u(C + IÊ[θ̃])− EU

(
(C + Iθ̃)|̄s

)]
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All the differences in the square brackets are positive. The first one due to (A.17), the second
one due to the concavity of u, and the third one due to both the concavity of u and (A.17).

Rearranging, we arrive at

prob[s̄]

prob[
¯
s]

u(C + IE[θ̃|s̄])− u(C + IÊ[θ̃])

u(C + IÊ[θ̃])− EU
(

(C + Iθ̃)|̄s
)+

u(C + IE[θ̃|̄s])− EU
(

(C + Iθ̃)|̄s
)

u(C + IÊ[θ̃])− EU
(

(C + Iθ̃)|̄s
) < p (A.18)

It is clear that the left-hand side is strictly positive so that seller’s effort dominates when p
is small. The left-hand is, however, also strictly smaller than one so that no effort after a
bad signal dominates when p is large.17

The condition

prob[s̄]

prob[
¯
s]

u(C + IE[θ̃|s̄])− u(C + IÊ[θ̃])

u(C + IÊ[θ̃])− EU
(

(C + Iθ̃)|̄s
) +

u(C + IE[θ̃|̄s])− EU
(

(C + Iθ̃)|̄s
)

u(C + IÊ[θ̃])− EU
(

(C + Iθ̃)|̄s
) < 1

simplifies to

prob[s̄]u(C + IE[θ̃|s̄]) + prob[
¯
s]u(C + IE[θ̃|̄s]) < u(C + IÊ[θ̃])

By concavity,

prob[s̄]u(C + IE[θ̃|s̄]) + prob[
¯
s]u(C + IE[θ̃|̄s]) < u(C + IE[θ̃])

and so the condition holds when

u(C + IE[θ̃]) ≤ u(C + IÊ[θ̃])

which is always the case due to (A.17).
Hence, whenever EU e=1 (P = 0) < EU e=1,e=0 (P = 0) holds, the privately optimal con-

tract entails no effort after a bad signal for low levels of pledgeable income P . For levels of

P ≥ P̂ where P̂ is given by EU e=1
(
P̂
)

= EU e=1,e=0
(
P̂
)

and P̂ < (π−
¯
π)I∆θ, the optimal

contract is the one with effort. For P > (π −
¯
π)I∆θ, the first-best is reached.

Proof of Proposition 5

Let g denote the per unit size of pledgeable income so that g ≡ P
A

. Let µ and µ
¯
s denote the

Lagrange multipliers on the participation and incentive-compatibility constraints (16) and
(17), respectively. Furthermore, let µ0 and µ1 be the Lagrange multipliers on the feasibility
constraints α ≥ 0 and α ≤ 1. The first-order conditions with respect to expected transfers

17Note that this inequality is evaluated at P = 0 and P is a function of p. There is, however, an open set
of parameters for which no effort after a bad signal dominates.
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τ̄ ,
¯
τ and margin α are:

ū′(τ̄) = µ (A.19)

¯
u′(

¯
τ) = µ+

µs̄
prob[

¯
s]

(A.20)

µs̄ (A− P) + µ0 = µA (R− 1) prob[
¯
s] + µ1 (A.21)

where ū′(τ̄) and
¯
u′(

¯
τ) denote the marginal utility conditional on the good and the bad signal,

respectively.
The first condition implies that µ > 0 and the participation constraint binds. Substituting

(A.19) and (A.21) into (A.20), we arrive at:

¯
u′(

¯
τ)

ū′(τ̄)
= 1 +

A (R− 1)

(A− P)
+

µ1 − µ0

ū′(τ̄)prob[
¯
s] (A− P)

When margins are not used, µ1 = 0. If they are used, then µ0 = 0 and equation (18)
follows. Moreover, equation (A.21) implies that the incentive-compatibility constraint binds,
µs̄ > 0 (since R > 1 and A > P). Then,

¯
τ = αA+ (1− α)P

and

τ̄ = −αprob[
¯
s]A (R− 1) + prob[

¯
s] (A− P)

prob[s̄]
− P prob[

¯
s]

prob[s̄]

For g ≥ 1, we have that P ≥ A. In this case, the incentive constraint in (17) cannot
be relaxed using margins and α∗ = 0. To see this, note that the right-hand side of (18) is
smaller or equal to 1 for g ≥ 1. However, the left-hand side is bigger or equal to 1 (since
ū′(τ̄) ≤

¯
u′(

¯
τ)). Hence, α∗ = 0.

Proof of Proposition 6

Let µ denote the Lagrange multiplier on the participation constraint (20). Furthermore, let
µ0 and µ1 be the Lagrange multipliers on the feasibility constraints α ≥ 0 and α ≤ 1. The
first-order conditions with respect to expected transfers τ̄ ,

¯
τ and margin α are:

ū′(τ̄) = µ

¯
u′(

¯
τ) = µ

prob[
¯
s](1− p)AE[u′d|̄s] + µ0 = µprob[

¯
s] [A (R− 1) + (1− p) (A− P)] + µ1

where E[u′d|̄s] denotes the expected marginal utility in case the protection seller defaults:

E[u′d |̄s] ≡ ¯
πu′(C + Iθ̄ + αA) + (1−

¯
π)u′(C + I

¯
θ + αA)

The first two first-order conditions yield ū′(τ̄) =
¯
u′(

¯
τ) ≡ u′nd. Plugging into the third first-

order condition gives (21). Since the contract does not depend on the signal, the transfers
satisfy (19). Combining (19) and the participation constraint (20) yields (22).
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Proof of Proposition 7

Consider the contract with risk-control after both signals. Suppose, contrary to the claim
in the proposition, that there exists a contract (τ̄í,

¯
τí) 6= (τ̄i,

¯
τi), i = 1, . . . , N , which satisfies

participation and incentive constraints of each protection seller and yields a higher utility
for the protection buyer.

Since τ̄í ≤ Pi and
¯
τí ≤ Pi with Pi = P

N
holds for each i, we have

N∑
i=1

τ̄í ≤ P and
N∑
i=1¯

τí ≤ P .

Similarly, E[τí] ≤ 0 for each i implies that
N∑
i=1

E[τí] ≤ 0. Let
N∑
i=1

τ̄í ≡ τ̄́ and
N∑
i=1¯

τí ≡
¯
τ́ . Then,

we have that

prob[s̄]u(C + IE[θ̃|s̄] + τ̄́) + prob[
¯
s]u(C + IE[θ̃|̄s] +

¯
τ́) >

prob[s̄]u(C + IE[θ̃|s̄] + τ̄) + prob[
¯
s]u(C + IE[θ̃|̄s] +

¯
τ)

But this contradicts the optimality of τ̄ and
¯
τ for N = 1.
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¯
τ0

τ̄

τ̄ = −prob[
¯
s]

prob[s̄]¯
τ

Participation Constraint

I(E[θ̃|s̄]− E[θ̃|̄s])

Full Insurance
of Signal Risk

45o

U(C + IE[θ̃])

I(E[θ̃]− E[θ̃|̄s])

−I(E[θ̃|s̄]− E[θ̃])
A

P

Incentive Constraint

B
−prob[

¯
s]

prob[s̄]P

Figure 2: Optimal contracts when effort is observable (A) and when it is not, yet the
protection seller exerts effort after a bad signal (B) (no counterparty risk)
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¯
τ0

τ̄

τ̄ = −prob[
¯
s]

prob[s̄]¯
τ

τ̄ = −prob[
¯
s]

prob[s̄] [p¯
τ + (1− p)P]

Participation Constraint (no effort)

Full Insurance
of Signal Risk

45o

P

B

C

Figure 3: Optimal contract with no effort by the protection seller after a bad signal (coun-
terparty risk)
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¯
τ0

τ̄

τ̄ = −prob[
¯
s]

prob[s̄]¯
τ

45o

A

slope=−prob[
¯
s]

prob[s̄] −
(R−1)prob[

¯
s]

(1−g)prob[s̄]

E(α∗)

K

−prob[
¯
s]

prob[s̄]KR
D(α = 1)

P

B(α = 0)
−prob[

¯
s]

prob[s̄]P

Figure 4: Margin with risk-control
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