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Abstract

We study asset pricing in economies with large information networks. We derive

closed form expressions for price, volatility, profitability and several other key variables,

as a function of the network topology. We focus on networks that are sparse and

have power law degree distributions, in line with empirical studies of large scale social

networks. Our analysis allows us to rank information networks along several dimensions

and to derive several novel results. For example, price volatility is a non-monotone

function of network connectedness, as is average expected profit. Moreover, the profit

distribution among investors and their trading volume are intimately linked to the

topological properties of the information network. We also study agent welfare and

show that uniform networks always dominate non-uniform networks with the same

degree of connectedness, and that the network that optimizes total welfare is typically

one with an intermediate degree of connectedness.
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1 Introduction

Network theory provides a promising tool to help us understand how information is incor-

porated into asset prices. Empirically, social networks — or more generally information

networks1 — have been shown to be important in explaining investors’ trading decisions

and portfolio performance; see, for instance, Hong, Kubik, and Stein (2004), Ivković and

Weisbenner (2007) and Cohen, Frazzini, and Malloy (2007).2 There is also abundant casual

evidence about this subject. The following recent example vividly displays the influence of

information networks: Hedge fund manager John Paulson profited US$ 15 billion in 2007,

speculating against the subprime mortgage market by shorting risky collateralized debt obli-

gations and buying credit default swaps. During the same time period, mogul Jeff Greene,

a friend of Mr. Paulson, used similar mortgage-market trading strategies and made US$

500 million, after having been informed by Mr. Paulson about his ideas in the spring of

2006.3 Clustering of investors in online financial communities on the Internet, as well as

geographical clustering of investors in financial hubs, is also consistent with a world in which

information networks play an important role in the functioning of financial markets.

The implications of information networks for the aggregate behavior of asset prices are

potentially large. For example, an important stylized fact about stock markets is that price

movements are not easily explained by public news: Both Cutler, Poterba, and Summers

(1989) and Fair (2002) document that most large stock market movements are not associ-

ated with the arrival of public information. It also seems difficult to reconcile market-wide

movements with the arrival of private information at the individual investor level. Instead,

such movements are consistent with an economy in which information is gradually diffused

into asset prices through an information network of small traders. This new channel of grad-

ual information diffusion is also consistent with other puzzling stylized properties of stock

markets, e.g., highly time-varying return volatility and trading volumes.

Theoretically, the presence of information networks leads to several important questions,

as, for instance, analyzed in recent papers by Ozsoylev (2005) and Colla and Mele (2008).

Ozsoylev (2005) studies how informational efficiency depends on the structure — that is, the

topology — of a social network, in which investors share information with their peers, and

1In this paper, we study general information networks. Social networks, i.e., personal and professional
relationships between individuals, may make two individuals “close” in an information network, as may other
factors, e.g., if two investors base their trading on the same information source. For our analysis, specific
reasons for “informational proximity” between investors are not important since the proximity is modeled
by a general metric.

2Hong, Kubik, and Stein (2004) provide evidence that fund managers’ portfolio choices are influenced by
word-of-mouth communication. Ivković and Weisbenner (2007) find similar evidence for households: they
attribute more than a quarter of the correlation between households’ stock purchases and stock purchases
made by their neighbors to word-of-mouth communication. Cohen, Frazzini, and Malloy (2007) posit that
there is communication via shared education networks between fund managers and corporate board members,
manifested in the abnormal returns managers earn on firms they are connected to through their network.

3See The Wall Street Journal, January 15, 2008. Mr. Paulson and Mr. Greene are now former friends.
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shows that for economies with large liquidity variance, price volatility decreases with the

average number of information sources agents have. Colla and Mele (2008) study a cyclical

network and show that agents who are close in the network have positively correlated trades,

whereas agents who are distant may have negatively correlated trades.

One limitation of current theoretical models is the absence of closed form solutions, due

to the complexity of the combination of networks, rational agents and endogenous price

formation.4 For example, the analysis in the static model of Ozsoylev (2005), although it

allows for general networks, does not lead to closed form solutions for prices, which restricts

the analysis to cases in which liquidity variance is high. The analysis in Colla and Mele

(2008), on the other hand, leads to strong asset pricing implications in a dynamic model

with strategic investors, but only for the very special cyclical network topology. These

limitations are not surprising, given the large number of degrees of freedom in a general

large-scale network.5

A different approach may be possible, however. Several studies have shown remark-

able similarities between different large-scale networks that arise when humans interact, like

friendship networks, networks of co-authorship and networks of e-mail correspondence –

see e.g., Milgram (1967), Barabasi and Albert (1999), Watts and Strogatz (1998), and also

Chung and Li (2006) for a general survey of the literature. Specifically, these networks tend

to be sparse (the number of connections between nodes are of the same order as number

of nodes, where in our networks the nodes represent individuals), they have small effective

diameter (the so-called small world property) and power laws govern their degree distribu-

tions (i.e., the distribution of the number of connections associated with a specific node is

power law distributed). It may therefore be fruitful to study a subclass of the general class

of large-scale networks that satisfy these properties, and focus on asset pricing implications

for this subclass of networks. Such an approach — in the spirit of statistical mechanics —

rests on the assumption that for large-scale networks, the overwhelming majority of degrees

of freedom average out, and only a few key statistical properties are important.

4If one is willing to drop the assumption of rationality, i.e.,of having networks of expected utility optimizing
agents with rational expectations, then the analysis is significantly simplified. For instance, DeMarzo,
Vayanos, and Zwiebel (2003) propose a boundedly-rational model of opinion formation in social networks,
and show that agents, who are “well-connected”, may have more influence in the overall formation of opinions
regardless of their information accuracies. DeMarzo, Vayanos, and Zwiebel (2004) apply the same model
to financial markets. Also, Xia (2007) develops an asset pricing model in which boundedly-rational agents
communicate information in social networks.

5The theoretical literature on networks and asset pricing is quite limited. There are, however, several
other papers that apply network theory to other financial market settings. For example, Khandani and
Lo (2007) argue that networks of hedge funds, linked through their portfolio holdings can explain liquidity
driven systemic risks in capital markets. Brumen and Vanini (2008) show how firms, linked in buyer-
supplier networks, will have similar credit risk. Recent empirical and theoretical work have done much
to advance the more general proposition that social networks have important consequences for a number of
other economic outcomes, including collaboration among firms, success in job search, educational attainment
and participation in crime. Jackson (2008a,b) provide extensive surveys of the diverse literature on social
networks in economics.
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Indeed, the number of agents in the stock market’s investor network is very large. For

example, the number of investors participating in the stock market in the United States is in

the tens of millions, so a large economy approximation to the economy with a finite number

of investors therefore seems to be in place. Theoretically, such an approximation may be

helpful, since we know, e.g., from the study of noisy rational expectations equilibria, that

tractable solutions often can be found in large economies – see Hellwig (1980) and Admati

(1985).

In this paper, we carry out a large economy analysis for a general class of large-scale net-

works. We show the existence of—and completely characterize—equilibrium under general

conditions. Our existence theorem provides a contribution in itself, since it provides a sig-

nificant extension of Hellwig (1980) by allowing for information commonality across agents

in a large economy noisy rational expectations equilibrium, i.e., unlike Hellwig (1980), our

model allows for agents to have information with correlated error terms and with severely

different signal precisions.

We find closed form expressions for price, expected profits, price volatility, trading volume

and value of connectedness. We analyze how connectedness influences asset pricing and the

expected profits of agents in the model. The distribution of expected profits among traders is

a simple function of the topological properties of the network, which allows us to understand

the wealth implications of information networks and, in particular, what types of networks

lead to more dispersed wealth distributions. We also study welfare across different networks,

in terms of agents’ certainty equivalents. Interestingly, several aggregate properties of the

market are typically non-monotonic functions of network connectedness, e.g., price volatility,

expected trading profits and agent welfare.

The rest of the paper is organized as follows. In section 2, we present the model and

derive equilibrium in closed form for large economies. We also elaborate on the types of

information networks that are socially plausible and the role such networks play in our

analysis. Section 3 examines the implications of information networks for asset prices and

agent welfare. Section 4 discusses various potential extensions and alternative assumptions,

whereas Section 5 maps out how the asset pricing implications of our model can be empirically

tested. Finally, we make some concluding remarks in section 6. Proofs are delegated to the

Appendix.

2 Model

We follow the large economy analysis in Hellwig (1980) closely,6 but extend the analysis

to allow for network relationships: Agents communicate information to each other about

asset payoffs, and this communication takes place according to an information network. In

6Our model is also related to the model of Diamond and Verrecchia (1981), however Diamond and
Verrecchia (1981) only analyze a finite-agent economy.
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particular, each agent has some information about her network neighbors’ payoff-related

information. The information network is exogenous, and can be considered to represent

information sharing across social connections, such as friendships and acquaintanceships.

Alternatively, being in the same network neighborhood can be interpreted as using similar

information sources, such as newsletters or advisory services. Our approach to modeling

information networks is similar to the approaches taken in Ozsoylev (2005) and Colla and

Mele (2008).

We first study a market, Mn, with a fixed number, n, of agents (also called nodes)

and then use the results to study a growing sequence of markets (M1, . . . ,Mn, . . .) to infer

asymptotic properties, when n tends to infinity.

2.1 Networks

There are n agents in the economy. The set of agents is N = {1, 2, . . . , n}.7 Agents are

connected in a network: The relation, E ⊂ N × N , describes whether agent i and j are

connected in the network. Specifically, the edge (i, j) ∈ E , if and only if there is a connection

between agent i and j. We use the convention that each agent is connected with herself,

that is, (i, i) ∈ E for all i ∈ N . We also assume that connections are undirected. Thus,

E is reflexive and symmetric. Formally, the n-agent network is described by the duple

Gn = (N, E). We alternatively represent the network relation, E , by the matrix E ∈ R
N×N ,

with (E)ij = 1 if (i, j) ∈ E and (E)ij = 0 otherwise.8

We define the distance function D(i, j) as the number of edges in the shortest path

between i and j. We use the conventions that D(i, i) = 0, and that D(i, j) = ∞ whenever

there is no path between node i and j. The set of nodes adjacent to node i is Qi = {j �= i :

(i, j) ∈ E} = {j : D(i, j) = 1}. More generally, the set of nodes at distance m from node

i is Qm
i = {j : D(i, j) = m}, and the set of nodes at distance not further away than m is

Rm
i

def
= ∪mj=0Q

j
i . The number of nodes at a distance not further away than m from node i is

Wm
i

def
= |Rm

i |. For m = 1, we simply write Ri andWi. Ri is the set of agent i’s neighbors, and

this set includes agent i himself. Wi is the degree of node i, which we also refer to as agent i’s

7We use the following conventions: lower case thin letters represent scalars, upper case thin letters
represent sets and functions, lower case bold letters represent vectors and upper case bold letters represent
matrices. Calligraphed letters represent structures, e.g. graphs, and relations. The set of natural numbers is
denoted by N, the set of real numbers is denoted by R, the set of positive real numbers is denoted R+, and
the set of strictly positive real numbers is denoted by R++. For a general set, W , |W | denotes the number
of elements in the set. For two sets, A and B, A\B represents the set {i ∈ A : i /∈ B}.

8We use the following vector and matrix notations: The ith element of the vector v is (v)i, and the
n elements vi, i = 1, . . . , n, form the vector [vi]i. A matrix is defined by the [·] operator on scalars, e.g.,
A = [aij ]ij . We write (A)ij for the scalar in the ith row and jth column of the matrix A, or, if there can
be no confusion, we write it as Aij . We use T to denote the transpose of vectors and matrices. One specific
vector is 1n = (1, 1, . . . , 1︸ ︷︷ ︸

n

)T (or just 1 when n is obvious).
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connectedness. The degree distribution is the function, d ∈ Sn,9 defined as d(i) =

∣∣{j:Wj=i}
∣∣

n
.

The common neighbors of agents i and j constitute the set Rij
def
= Ri ∩Rj . The number

of such common neighbors is given by Wij = |Rij|. We define the symmetric neighborhood

matrix W as being equal to [Wij ]ij . The element on row i and column j ofW thus represents

the number of agents that are common neighbors of i and j.10 The relation W = E2 follows

from standard graph theory. Clearly, we have

(W)ij ∈ N, (1)

(W)ij ≤ min{Wi,Wj}, (2)

(W)ii = Wi ≥ 1. (3)

2.2 Agents, assets, and information structure

The economy operates in two periods. Trade takes place at t = 0 and asset payoffs realize

at t = 1. Agents derive utility only from their final wealth at t = 1. Agents are price-takers.

Also, they are expected utility maximizers and have CARA preferences. For simplicity, we

assume that the constant absolute risk aversion coefficient of each agent is 1. Therefore, the

expected utility derived by any agent from a risky gamble, ξ̃, is

E[U(ξ̃)] = −E[e−ξ̃].11

We note that for agents with the above specifications, the certainty equivalent, CE, of the

gamble ξ̃ is

− log
(
E
[
e−ξ̃
])
. (4)

There are two assets in the economy: one risk-free and one risky. Prior to trading, agents

are not endowed with either asset. The price and payoff of the risk-free asset, which is in

elastic supply, are normalized to 1.12 The risky asset pays off a random liquidating dividend

X̃ at t = 1, which is normally distributed with mean X̄ ≥ 0 and variance σ2. There is a

random supply of the risky asset during the trading period, i.e., at t = 0: in the current

n-agent setup, this supply is given by Z̃n = nZ̃, where Z̃ is normally distributed with mean

Z̄ ≥ 0 and variance Δ2. There are n distinct primary pieces of information, {ỹk}nk=1, about

the risky asset payoff X̃: ỹk communicates X̃ with some additive noise ε̃k. In particular,

9Here, Sn def
= {x ∈ R

n, x(i) ≥ 0,
∑n

i=1 x(i) = 1} is the unit simplex in R
n. The unit simplex over the

natural numbers is S∞, with the natural interpretation that S1 ⊂ · · · ⊂ Sn ⊂ Sn+1 ⊂ · · · ⊂ S∞.
10This number includes nodes i and j if i and j are linked themselves.
11We use the following standard notation: The expectation and variance of a random variable, ξ̃, are E[ξ̃]

and var(ξ̃), respectively. The correlation and covariance between two random variables are cov(ξ̃1, ξ̃2) and
corr(ξ̃1 , ξ̃2), respectively.

12The terms price and demand will be exclusively used for the risky asset price and the risky asset demand,
respectively, unless otherwise stated.
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ỹk = X̃ + ε̃k, where ε̃k is normally distributed with mean 0 and variance s2. The random

variables X̃, Z̃ and {ε̃k}nk=1 are jointly independent.

Prior to trading at t = 0, each agent observes a signal about the risky payoff. Formally,

agent i receives the signal

x̃i = Fi (ỹ1, . . . , ỹn | Gn) ,
for some function Fi. Hence, each agent’s signal conveys and combines the primary infor-

mation pieces, {ỹk}nk=1, according to the information network Gn. Here, ỹi can be viewed

as agent i’s information prior to any communication among neighbors, whereas x̃i can be

interpreted as agent i’s information after such communication takes place. In general, we

want the topological properties of the network to carry over to agents’ signals so that the

following properties hold:

(i) Agents with more neighbors receive more precise signals about the risky payoff:

Wi > Wj ⇒ var(X̃|x̃i) < var(X̃|x̃j).

(ii) If two agents have no common neighbors, then their signals’ error terms are uncorre-

lated:

Ri ∩Rj = ∅ ⇒ cov(x̃i, x̃j) = var(X̃).

(iii) Two agents, who have the same neighbors,13 receive the same signal:

Ri = Rj ⇒ x̃i = x̃j .

(iv) All else equal, the correlation between agent i’s and j’s signals is higher if they are

connected than if they are not connected. That is, given two networks G = (N, E) and
G ′ = (N, E ′), which are identical except for that (i, j) ∈ E but (i, j) /∈ E ′, then the

correlation between x̃i and x̃j in network G is higher than that in network G ′.

A signal structure that satisfies the above properties, which will be very convenient to work

with, is given by

x̃i
def
=

∑
k∈Ri

ỹk

Wi
, (5)

which immediately implies that x̃i = X̃ + η̃i, with η̃i =
∑

k∈Ri
ε̃k

Wi
. The error terms, {η̃}i, are

multivariate normally distributed random variables with mean zero and covariance matrix

S
def
= [cov(η̃i, η̃j)]ij = s2D−1WD−1, (6)

13According to our definition, the set of agent i’s neighbors, namely Ri, includes agent i himself. Therefore,
if two agents have the same neighbors, then they are also each other’s neighbor.
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where D = diag((W)11, . . . , (W)nn).
14 Clearly, all η̃i’s, being linear combinations of ε̃i’s, are

independent of Z̃ and X̃.

Agents have rational expectations concerning asset prices, therefore, they learn from the

risky asset price, which aggregates all agents’ signals. Agent i’s information set, when he

trades at t = 1, is thus15

Ii = {x̃i, p̃} , (7)

where p̃ stands for the risky asset price. Agent i’s risky asset demand schedule depends on

his information as well as price, and is represented by ψi(x̃i, p̃).

The key feature of our model is that the network topology maps to the information

structure in the economy.16 This modeling approach provides a useful framework in which

information networks are employed to explore a wide range of information structures in a

tractable manner.

2.3 Interpretation of network relations

As we elaborate above, information networks determine who shares information with whom.

Arguably, the most natural interpretation of information networks is that they represent

information sharing via direct social connections, such as friendships and acquaintanceships.

According to this interpretation, (i, j) ∈ E represents information sharing between friends i

and j. However, our forthcoming analysis is perfectly general and holds for other interpreta-

tions of the network relation E , and thereby of the neighborhood matrix W. In particular,

network relations can represent information sharing via not only direct but also indirect

social connections.

For instance, take the network relation E = {(i, j) : D(i, j) ≤ 1} to represent information

sharing via direct social connections, say friendships. We can define a new relation Ê =

{(i, j) : D(i, j) ≤ 2}, which represents relationships in which agents share information with

not only their friends but also with their friends’ friends. The relation Ê leads to a new

neighborhood matrix, Ŵ, and degrees, Ŵi = (Ŵ)ii. It also allows for a new network metric,

namely centrality, to play a role in the information structure. As a specific example, consider

14For a general vector d, diag(d) is the diagonal matrix with diagonal elements (diag(d))ii = (d)i.
15Since x̃i is a sufficient statistic for X̃ conditioned on {ỹk : k ∈ Ri}, agent i’s information set Ii is

essentially equivalent to
{
E[X̃ |{ỹk : k ∈ Ri}], p̃

}
. A slightly different approach is taken in Ozsoylev (2005),

who assumes that agent i’s information set is Ii =
{
ỹi, E[X̃ |{ỹk : k ∈ Ri\{i}}], p̃

}
. We have also carried

out the analysis with Ozsoylev’s (2005) approach, with qualitatively similar — although somewhat more
complex — results. The analysis is available upon request.

16The information structure in our model cannot be mapped to the information structures of Hellwig
(1980) and Diamond and Verrecchia (1981). In Hellwig (1980) and Diamond and Verrecchia (1981) agents’
private signals carry independent error terms whereas in our model signals have correlated error terms. It is
in effect the correlated error terms that proxy the network connections. Also, as we shall see, in our model
some agents are allowed to receive very precise signals. This is in contrast to Hellwig (1980), where there is
a common upper bound on the precision of all signals.
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Figure 1: According to relation E , W1 = 5, W2 = 6, W3 = 2, hence agent 2 has the most precise
information. On the other hand, according to relation Ê , Ŵ1 = 21, Ŵ2 = 9, Ŵ3 = 6, and therefore
agent 1 has the most precise information due to his centrality.

the network shown in Figure 1. According to relation E , agent 2 has more precise information

about the asset payoff compared to agent 1, since W1 = 5 and W2 = 6. One might argue,

however, that agent 1 is more central than agent 2 in the sense that although he has fewer

connections than agent 2, his connections are themselves better connected, which should

work to his advantage. This is captured in the definition of relation Ê , which also takes into

account friends’ friends. Observe that agent 1’s degree is Ŵ1 = 21 according to relation Ê ,
whereas agent 2’s degree is only 9. According to relation Ê , agent 1 is the one who is most

connected, and this follows from his centrality in the network. Therefore, in general, an

agent’s connectedness, as defined in section 2.1, can be interpreted as that agent’s centrality.

Other definitions of centrality also exist, as has been extensively discussed in the network

literature. For example, in Das and Sisk (2005), the centrality score, which measures the

centrality of a node taking into account even more distant indirect connections, is used

to apply network methods to the analysis of asset prices. Their interpretation of what

constitutes a network is somewhat different from ours, however, since they use nodes to

represent stocks and connections to represent overlapping posters in Internet stock message

boards.

Our forthcoming analysis is valid for any given network relation E and neighborhood

matrix W as long as there is a set of nodes, Ri, associated with each node, i, such that

i ∈ Ri, (W)ij ∈ N , (W)ij ≤ min{(W)ii , (W)jj} and (W)ii ≥ 1, where [W]ij
def
= |Ri ∩ Rj |.

We use E , as defined in section 2.1, to represent the network relation going forward, keeping

in mind that, depending on how connections are defined, this relation can take centrality

into account.
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2.4 Equilibrium

A linear noisy rational expectations equilibrium (NREE) with n agents is defined as a price

function

p̃ = π0 +

n∑
i=1

πix̃i − γZ̃n, (8)

such that

• market always clears, i.e., Z̃n =
∑n

i=1 ψi(x̃i, p̃) for all realizations of {x̃i}i, X̃ , Z̃n, and

• each agent optimizes expected utility of his final wealth at t = 1, conditional on his

information, under rational expectations.

It follows from our CARA-normal setup that agent i’s optimal demand schedule takes the

form

ψi(x̃i, p̃) =
E[X̃|Ii]− p̃

V ar[X̃|Ii]
. (9)

We are interested in the existence of a linear NREE in a “large” market. We note that, in

contrast to the analysis in Hellwig (1980), the existence of a linear NREE for a finite number

of agents is not guaranteed here, because in our setup agents, who are each other’s neighbors

or who have common neighbors, receive signals with correlated error terms. However, as

we show below, under some additional assumptions regarding the information structure, a

linear NREE always exists when the number of agents is sufficiently high.

Formally, we study a sequence of markets, M1, . . .Mn, . . . , with increasing number

of agents, n. We use the following notation: For vectors, y, we define the vector norms

‖y‖p = (
∑

i(y)
p
i )

1/p and ‖y‖∞ = maxi |(y)i|. Similarly, we define the matrix norms, ‖A‖p =
sup{y:‖y‖p=1} ‖Ay‖p, p ∈ [1,∞]. Moreover, we say that f(n) = o(g(n)) if limn→∞ f(n)/g(n) =

0, and that f(n) = O(g(n)) if there is a C > 0 such that f(n) ≤ Cg(n) for all n. Simi-

larly, if the conditions hold in probability, we say that f(n) = op(g(n)) and f(n) = Op(n),

respectively. If there is a constant C > 0, such that limn→∞ f(n)/g(n) = C, then we say

that f(n) ∼ g(n), and similarly we define f(n) ∼p g(n). Also, we say that f ∼ g at x if

limε↘0 f(x+ ε)/g(x+ ε) = C for some C > 0.

Our main result is:

Theorem 1 Assume a sequence of n-agent markets, Mn, n = 1, 2, . . ., in which agents’

information sets are defined by (7), the covariance matrix Sn of market Mn is defined via

equation (6), the neighborhood matrix Wn of market Mn satisfies equations (1)-(3), and

‖Wn‖∞ = op(n), (10)

lim
n→∞

∑n
i=1(W

n)ii
s2n

= β + op(1) > 0. (11)
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Then, with probability one, the equilibrium price converges to

p̃ = π∗
0 + π∗X̃ − γ∗Z̃, (12)

where

π∗ = γ∗β, (13)

γ∗ =
σ2Δ2 + σ2β

βσ2Δ2 +Δ2 + β2σ2
, (14)

π∗
0 = γ∗

X̄Δ2 + Z̄βσ2

σ2Δ2 + σ2β
. (15)

Remark 1 Since an agent is always connected to himself, β ≥ 1/s2.

Theorem 1 will be our workhorse when we analyze asset pricing and welfare implications

of large information networks. In this theorem, β appears as a crucial parameter and affects

the large-economy equilibrium price. From (11), it follows that β stands for the asymptotic

average number of connections which agents possess as n tends to infinity, scaled by the

precision of information noise {ε}i, namely 1
s2
. It is, therefore, natural to think of β as a

measure of network connectedness. It is intuitively not surprising that β affects the equilib-

rium price. A high β suggests that agents on average have more precise information about

the asset payoff due to their many connections, and this leads them to trade aggressively on

their information, which in turn increases the prominence of the asset payoff X̃ relative to

the asset supply Z̃ in the equilibrium price. A low β affects the relative prominence between

the asset payoff and asset supply in the opposite direction. We note that, depending on how

the network relation, E , is defined, network connectedness can encompass different network

metrics, such as network centrality, in line with our discussion in section 2.3.

Conditions (10) and (11), stated in Theorem 1, are sufficient for the existence of the

linear NREE. Condition (11) ensures that the average number of connections of agents

in the network is well defined as the economy grows. On the other hand, condition (10)

imposes a restriction on the asymptotic behavior of individual agents’ number of connections.

Condition (11) implies that the information network of the large market is sparse, meaning

that the number of connections between agents are of the same order as the number of

nodes. Recall from our discussions in the introduction that sparseness is one of the most

common empirical features of social networks, so the condition is well motivated from a

social perspective.

Condition (10) also possesses a social meaning as well as an economic one. In particular,

it ensures that no agent is informationally superior in the large market, i.e., that no agent
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possesses too much information. For example, suppose that condition (10) was dropped

so that there were informationally superior agents. Consider the case where some of the

agents were connected to everyone else in the network. Then those agents would know the

exact value of the risky payoff X̃ in the large market and therefore trade such that price

fully revealed payoff. With fully revealing prices, agents could afford to disregard their

private information and connections, but if agents did not act on their own information and

connections at all, it is unclear why the price should reveal the payoff in the first place.

Hellwig (1980) refers to equilibria under such circumstances as schizophrenic.

Condition (10) is sufficient to avoid the conceptual difficulty described by Hellwig (1980),

however it does not rule out existence of relatively well-informed agents. For instance,

condition (10) allows for situations of the following nature. Consider an n-agent economy

where some agents are connected to
√
n-many other agents. In the large economy, where n

tends to infinity, these agents possess the information of many other agents. However, the

total mass of these agents is too small to effectively make the price fully revealing. In fact, the

information they possess is negligible compared to the residual uncertainty they face in the

sense that these agents, individually, have no effect on the large-economy equilibrium price

(12). If they had any effect, the equilibrium price would have reflected the error terms in

their information. Since the equilibrium price is not fully revealing, agents use their private

information, and condition (10) therefore ensures the internal consistency of the model under

significantly weaker conditions than in Hellwig (1980).

Theorem 1 also generalizes the results in Hellwig (1980) by allowing agents to have infor-

mation with correlated error terms via network connections. To the best of our knowledge,

ours is the first NREE model to solve for equilibrium in closed form while allowing for corre-

lation across agents’ signal error terms.17 Hence, earlier NREE models cannot investigate the

implications of commonality of information across economic agents. Several extensions of the

Kyle (1985) model have been introduced, which allow for dispersedly informed agents, who

possess signals carrying correlated error terms (see, e.g., Foster and Viswanathan (1996) and

Back, Cao, and Willard (2000)). However, in these market microstructure models, agents

submit market orders and thereby do not learn from contemporaneous prices, whereas in

the NREE models, agents do learn from contemporaneous prices. This makes the introduc-

tion of information commonality across agents in NREE models challenging from a technical

standpoint. Theorem 1 shows that, even with correlated signal error terms, a large-economy

NREE exists and can be solved for, provided that agents’ signals do not become too corre-

lated due to network connections. This is ensured by conditions (10,11).

Even though Theorem 1 does not depend on the existence of an asymptotic degree dis-

tribution, d, as n tends to infinity, we will throughout the rest of the paper restrict our

attention to sequences of networks for which such a distribution exists, i.e., we assume:

17Ozsoylev (2005) allows for correlation across agents’ signal error terms in a finite-agent NREE model.
However, a closed-form solution for equilibrium cannot be obtained in Ozsoylev (2005), which significantly
restricts the equilibrium analysis.
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Assumption 1 There is a degree distribution, d ∈ S∞, such that

lim
n→∞

n∑
i=1

|dn(i)− d(i)| = 0,

with probability one, where dn is the degree distribution for the economy with n agents.

Assumption 1 is thus a purely technical assumption, needed since we are technically studying

sequences of economies. We call d the degree distribution of the large network. To avoid

confusion, we will specifically refer to highlighted assumptions, such as Assumption 1, in the

statements of our results whenever they are needed.

In our subsequent analysis of individual agents, we will focus on agents for which the

asymptotic degree exists, i.e., for which limn→∞Wn
ii exists and is finite (with probability

one). Similarly, when we compare pairs of agents in section 3.3, an additional underlying

assumption is that limn→∞Wn
ij exists and is finite. We could, alternatively, have focused

on networks for which limn→∞Wn
ii exist for all i, but this would be unnecessarily restrictive

and would rule out many important random network models. The issue can be avoided

completely by interpreting “agent i” with connectedness Wii as a sequence of different agents

i1, . . . , in, . . ., such that limn→∞Wn
inin exists and is finite, but we avoid this approach since

it leads to a cumbersome notation.

2.5 Socially plausible networks

Given the enormous number of degrees of freedom in a general large network, it is not

surprising that any degree distribution can be supported by a large economy. We have the

following existence result:

Proposition 1 Given a degree distribution d ∈ S∞, there is a sequence of networks, Gn,
with degree distributions, dn ∈ Sn, such that limn→∞

∑n
i=1 |dn(i) − d(i)| = 0. If d(i) =

O(i−α), α > 2, then the sequence of networks can be constructed to satisfy the conditions of

Theorem 1. If d(i) ∼ i−α, α ≤ 2, then condition (11) will fail.

Networks that satisfy

d(i) ∼ i−α,

are said to have power-law distributed degree distributions, with tail exponent α, or simply

to be power-law distributed.18 Power-law distributed networks with low α’s are said to be

heavy-tailed.

18Alternatively, one can define the tail exponent to be α̂ when
∑∞

i=n d(i) ∼ n−α̂, as, e.g., done in Gabaix
(1999). Such a definition is based on the c.d.f. (or, strictly speaking, on one minus the c.d.f.) of the degree
distribution, whereas our definition is based on the p.d.f. The correspondence between α̂ and α is then
α̂ = α− 1.
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Theorem 1 derives a large-economy equilibrium by studying the limit of a sequence of

economies with increasing number of agents. A large-economy scenario makes sense for

US and European capital markets, where market participation is in the tens of millions.

However, one may question the plausibility of network topologies that arise in our large-

economy equilibrium. After all, certain conditions are needed, namely (10)-(11), which

constrain the types of network topologies that can be analyzed. Below we argue that our

results are applicable to socially plausible networks.

If we were to generate a social network in a random manner by creating links between

people independently with some probability p, then the fraction of people with k-many

links would decrease exponentially in k. This is a classical random network approach and,

the tail exponent is α = ∞, so our theory applies. However, most large social networks,

including collaboration networks, friendship networks, networks of e-mail correspondences

and the World Wide Web do not fit into the random network framework.19 Instead, in these

social networks, the fraction of people with k-many links decreases only polynomially in k.

In other words, the degree distributions of many large social networks satisfy power-laws.20

Our focus is on how information disseminates in social networks, i.e., we are interested

in information networks. Recent studies show that information flow in social groups also

exhibit a pattern which is consistent with an underlying network with a power-law degree

distribution.21 Proposition 1 implies that a large-economy equilibrium characterized by

Theorem 1 exists with power-law distributed information networks as long as their tail

exponent is larger than 2.

We next analyze the relationship between tail exponent α and network connectedness β

for a specific network type. In order to keep the number of parameters down, we assume:

Assumption 2 s2 = 1.

Assumption 2 is purely for normalization, leading to simpler formulas; it does not restrict

the model in any way. We will employ this assumption throughout most of the paper.

A convenient class of networks are the so-called Zipf-Mandelbrot distributed networks,

with degree distribution, dn ∼ ZM(α, n). Here, the Zipf-Mandelbrot distribution, dn ∼
ZM(α, n), is a particular form of power-law distribution. For a Zipf-Mandelbrot distribution,

dn(i) = c(α, n)i−α, where c(α, n) = (
∑n

i=1 i
−α)−1. For α > 2, this implies that c(α, n) →

ζ(α)−1 as n→ ∞, where ζ is the Riemann Zeta function (see Abramowitz and Stegun (1970),

page 807). For the large network degree distribution, we write d ∼ ZM(α). We have:

19Newman (2001) shows that the data on scientific collaboration are well fitted by a power-law form with
an exponential cutoff. Grabowskia (2007) study friendship networks, Adamic and Adar (2005) look at e-mail
correspondences, and Kumar, Raghavan, Rajagopalan, and Tomkins (1999) at the World Wide Web.

20Simon (1955) wrote arguably the first paper which rigorously defined and analyzed a model for power-law
distributions.

21See, e.g., Wu, Huberman, Adamic, and Tyler (2004).
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Proposition 2 For large networks, satisfying assumptions 1 and 2, with degrees that are

Zipf-Mandelbrot distributed, d ∼ ZM(α) with tail exponent α > 2, the conditions for The-

orem 1 are satisfied with β(α) = ζ(α − 1)/ζ(α), where β is as defined in (11). If the

tail-exponent, α ≤ 2, then β = ∞.22

This result immediately leads to :

Corollary 1 β(α) is a decreasing, strictly convex function of α, such that limα→∞ β(α) = 1,

limα↘2 β(α) = ∞.

We can therefore write α = FZM(β), where FZM : (1,∞) → (2,∞).

Propositions 1 and 2 make it quite clear when to expect the existence of the large-economy

equilibrium characterized by Theorem 1. In the case when the degree distribution satisfies

a power law with a heavy-tailed degree distribution, α ≤ 2, the information asymmetry

between informed and uninformed investors is so large that the informed investors may

basically infer the true value of the asset, and a linear NREE may not exist in the asymptotic

economy. If the connectedness of the most connected agents grows faster than implied by

α > 2, a model in which the most connected agents are strategic (i.e., non-price-taking) may

be needed instead. Similar breakpoints occur in economic models with power-laws at α = 2

in other contexts, see e.g., Ibragimov, Jaffee, and Walden (2009).

Although power laws with heavier tails do occur in social sciences (e.g., distributions

that satisfy Zipf’s law, which in our notation corresponds to α = 2, see Gabaix (1999)), it

has been argued that α is typically larger than 2 but smaller than 3 in power-law networks

(see, e.g., Grossman, Ion, and Castro (2007) and Barabasi and Albert (1999)).

3 Asset pricing and welfare implications of networks

We examine asset pricing and welfare implications of information networks in the large-

economy equilibrium characterized by Theorem 1. We identify novel relationships between

asset prices and network connectedness. We also study how network connectedness affects

agent welfare.

3.1 Price volatility and market efficiency

The unconditional variance of price is often used as a measure of price volatility in the

rational expectations equilibrium literature since it lends itself to empirical testing – see,

e.g. Vives (1995) and Wang (1993). Following this convention, we use the unconditional

variance of price in our analysis of price volatility. From Theorem 1, we see that the price

volatility is

var(p̃) = (π∗)2σ2 + (γ∗)2Δ2. (16)

22For general s, the expression becomes β(α) = ζ(α− 1)/(s2ζ(α)).
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Following the terminology in Ozsoylev (2005), the price volatility can be decomposed

into an information driven volatility component, (π∗)2σ2, and a liquidity (supply) driven

volatility component, (γ∗)2Δ2. We would expect that when the network’s connectedness

becomes large, the price converges to the payoff since the aggregate information in the

economy fully reveals the payoff. Indeed, it is easy to check from equations (13)-(15) that

such a convergence occurs, i.e., π → 1, π0 → 0 and γ∗ → 0, as β → ∞. As a direct

corollary, volatility becomes solely driven by information rather than liquidity in the limit.

However, the convergence need not be monotone in the level of network connectedness, β.

The following proposition completely characterizes the behavior of volatility with regard to

connectedness:

Proposition 3 The following hold for the large-economy equilibrium characterized by The-

orem 1:

(a) The information driven volatility component increases as network connectedness in-

creases. That is,
∂ (π∗)2σ2

∂β
> 0.

(b) The liquidity driven volatility component is a non-monotonic function of network con-

nectedness. In particular,

∂ (γ∗)2Δ2

∂β
< 0, if β >

Δ

σ
−Δ2,

∂ (γ∗)2Δ2

∂β
≥ 0, otherwise.

(c) The price volatility is a non-monotonic function of network connectedness. In partic-

ular,

∂ var(p̃)

∂β
> 0, if Δ2 <

1− βσ2

2σ2
+

1

2

√
1− 2βσ2 + 5β2σ4

σ4
,

∂ var(p̃)

∂β
≤ 0, otherwise.

As network connectedness increases agents become, on average, better informed about

the payoff. Better informed agents’ demands become more aggressive, rendering the infor-

mation driven volatility component to increase. This is shown in part (a) of Proposition 3.

Part (b) shows that the liquidity driven volatility component behaves in a non-monotonic

fashion with regard to network connectedness. The intuition behind this result is as fol-

lows. Suppose, to begin with, that agents have no connections. As networks connectedness
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increases, agents learn more from each other, and equilibrium price becomes more infor-

mative. Therefore agents rely more on prices as an information source while forming their

demands, which also makes their demands more dependent on liquidity and, in turn, renders

a larger liquidity driven volatility component. On the other hand, above a certain level of

network connectedness, agents become so informed due to their network connections that

they hardly learn additional information from the price. As a result, agents rely less on price

as an information source, which makes their demands less dependent on liquidity, and hence

the liquidity driven volatility component diminishes. Due to the non-monotonicity of liquid-

ity driven volatility component price volatility also behaves in a non-monotonic fashion, as

shown in part (c) of Proposition 3. The direction of its movement with respect to connect-

edness depends on which of the two components, information driven or liquidity driven, is

the dominant one.

Proposition 3 shows that the underlying network topology is intimately connected to

volatility in a nontrivial way, and that it may therefore be important in understanding

real world volatility dynamics in capital markets. The result complements the analysis in

Ozsoylev (2005), who focuses on economies in which the liquidity variance, Δ2, is high, and

who thereby provides a partial characterization of price volatility.

As is common in the literature, we measure market efficiency by the precision of payoff

conditional on price. Even though the relationship between price volatility and network

connectedness is non-monotonic, an increase in connectedness unambiguously leads to higher

market efficiency, i.e., to more information revelation via price.

Proposition 4 In the large-economy equilibrium characterized by Theorem 1, market effi-

ciency increases as the network’s connectedness increases. That is,

∂ V ar
(
X̃
∣∣p̃)

∂β
< 0.

3.2 Trading profits

We now turn our attention to individual agents’ trading profits. We restrict our agent-

level analysis to those agents in large economies, whose connectedness are well-defined and

bounded. That is, when we analyze agent i’s trading profit, we assume:

Assumption 3 Wi
def
= limn→∞Wn

i,i exists and is finite with probability one.

Similar to Assumption 1, Assumption 3 is thus a purely technical assumption, needed since

we are technically studying sequences of economies.

Agent i’s ex-ante (expected) trading profit is given by

Πi = E
[(
X̃ − p̃

)
ψi(x̃i, p̃)

]
,
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where agent i’s demand function, ψi(x̃i, p̃), is of the form

ψi(x̃i, p̃) =
X̄Δ2 + Z̄βσ2

σ2Δ2 + σ2β
− Δ2

σ2(Δ2 + β)
p̃+

Wi

s2
(x̃i − p̃).

Under assumption 3, the following proposition derives individual agents’ ex-ante trading

profits in a large economy.

Proposition 5 Consider the large-economy equilibrium characterized by Theorem 1. As-

sume that Assumption 3 holds for agent i. Then, agent i’s ex-ante trading profit, Πi, is

linear in the agent’s connectedness, Wi. In particular,

Πi =
Z̄Δ2

(
X̄Δ2 + βZ̄σ2

)
(β +Δ2) (Δ2 + β (β +Δ2)σ2)

− Δ2

σ2(Δ2 + β)
E
[
p(X̃ − p̃)

]
︸ ︷︷ ︸

ΠF

+
Wi

s2
E
[
(X̃ − p̃)2

]
︸ ︷︷ ︸

ΠI
i

.

(17)

Here, ΠF is the information-free ex-ante trading profit, common for all agents, which is

driven by the compensation an agent needs to take on risk, and ΠI
i is the information-related

ex-ante trading profit, which varies by agent.

This result immediately implies that there is a tight connection between the network

degree distribution and the distribution of agents’ ex-ante trading profits:

Corollary 2 In a large economy characterized by Theorem 1, which satisfies assumption 1,

the distribution of agents’ ex-ante trading profits is an affine transformation of the network’s

degree distribution.

We use Proposition 5 to examine the relationship between information networks and

ex-ante trading profits in a large economy. First we focus on the impact of an individual

agent’s network position on her ex-ante trading profit. Then we analyze the impact of

network connectedness on the average ex-ante trading profit. The average ex-ante trading

profit is given by

Π
def
= lim

n→∞

∑n
i=1E

[(
X̃ − p̃n

)
ψni (x̃

n
i , p̃

n)
]

n
,

where p̃n and {ψni (x̃ni , p̃n)}ni=1 are equilibrium prices and demands, respectively, of n-agent

economies. Similar to what we did for individual agents in Proposition 5, we decompose the

average trading profit as follows:

Π = ΠF +ΠI ,

where ΠI def
= limn→∞

∑n
i=1 Π

I
i

n
. Here, ΠF is the information-free average trading profit and ΠI

i

is the information-related average trading profit.

For simplicity, we make the following assumption:
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Assumption 4 X̄ = Z̄ = 0.

Assumption 4 is effectively a normalization of the expected payoff and expected liquidity

(supply), which is common in the literature, see, e.g., Brunnermeier (2005) and Spiegel

(1998). It leads to simplified formulas, without restricting the intuition. We then have:

Proposition 6 Consider the large-economy equilibrium characterized by Theorem 1. As-

sume that Assumption 4 holds, and that Assumption 3 holds for agent i.

(a) If the network connectedness, β, is held constant, then agent i’s ex-ante trading profit

increases as her own connectedness increases. That is,

∂Πi

∂Wi
> 0.

(b) If agent i’s connectedness, Wi, is held constant, then agent i’s ex-ante trading profit

decreases as the network’s connectedness increases. That is,

∂Πi

∂β
< 0.

The intuitions behind the proposition are straightforward. The higher the number of con-

nections an agent has in an information network, the higher her profits, due to her increasing

informational advantage. On the other hand, when an agent’s number of connections is held

constant that agent’s trading profit decreases as the network connectedness increases, since

more information is compounded into price, diminishing the agent’s informational rent.

The two effects together make the relationship between network connectedness and av-

erage trading profit non-trivial. On the one hand, higher network connectedness implies

an increase in the average profit since everyone is, on average, better informed. On the

other hand, it can also imply a decrease in the average profit, because more information is

compounded into price and that diminishes everyone’s informational rent. This is shown in

Proposition 7 Consider the large-economy equilibrium characterized by Theorem 1. As-

sume that Assumption 4 holds.

(a) The average ex-ante trading profit is a non-monotonic function of network connected-

ness. In particular,

∂Π

∂β
> 0, if σ <

1

Δ
and β <

Δ

σ
−Δ2,

∂Π

∂β
≤ 0, otherwise.
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(b) ΠF is positive, decreasing in β, and approaches 0 as β tends to ∞.

(c) ΠI is positive, non-monotonic in β, and approaches 0 as β tends to ∞.

(d) As β tends to ∞, Π approaches 0.

Part (a) of the proposition shows that there is an optimal level of network connectedness

for average trading profit. Provided that σ < 1
Δ
, the optimal level is neither 0 nor ∞. If

network connectedness is very low, the average agent enjoys a higher trading profit as the

number of connections increases since she is getting better informed. Part (b) tells us that

the information-free component, ΠF , of average trading profit is decreasing in β. As we have

mentioned before, the information-free component is the compensation agents need to take

on risk. When β, i.e., the network connectedness, increases, the risk perceived by agents

decreases since they become better informed. As a result, the compensation required for

the perceived risk decreases. The intuition behind part (c) of the proposition, i.e., for ΠI

being non-monotonic in β, has already been discussed following Proposition 6, and (d) is

also natural, since all informational rents disappear in the limit, when connectedness grows.

3.3 Portfolio holdings and trading volume

Arguably, the most observable effect of information networks is on portfolio holdings. For

instance, Hong, Kubik, and Stein (2004) show that the trades of any given fund manager

respond more sensitively to the trades of other managers in the same city than to the trades

of managers in other cities. The authors interpret this empirical regularity as managers

spreading information to one another directly through word-of-mouth communication. Using

account-level data from People’s Republic of China, Feng and Seasholes (2004) find that

trades are highly correlated when investors are divided geographically. In a similar spirit to

the interpretation made by Hong, Kubik, and Stein (2004), the finding of Feng and Seasholes

(2004) can be attributed to the positive relationship between geographical proximity and

likelihood of communication among investors. Our model provides a theoretical justification

of these empirical findings.

Proposition 8 Consider the large-economy equilibrium characterized by Theorem 1. As-

sume that, for agents i, j, Assumption 3 holds and also that Wij
def
= limn→∞Wn

i,j exists and

is bounded, with probability one. All else held constant, the demand correlation of agents i

and j increases as the number of their common neighbors increases. That is,

∂ corr (ψi(x̃i, p̃), ψj(x̃j , p̃))

∂Wij
> 0.
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Proposition 8 finds a positive relationship between informational proximity and correlated

trading. Geographical proximity is expected to encourage communication, therefore, the

empirical studies cited above lend support to this result.

The impact of information networks on trading volume is also straightforward to ana-

lyze. The trading volume of individual i, with connectedness Wi, is defined as his expected

unsigned asset demand, ψunsignedi (Wi) = E [|ψi|], or equivalently as ψunsignedi =
√

π
2
E [ψ2

i ].

Here, π is the mathematical constant: π = 3.1415.... The aggregate trading volume is de-

fined as ψmarket = limn→∞
√

1
n
π
2
E[
∑

i ψ
2
i ].

23 It turns out that to characterize the aggregate

trading volume, in addition to network connectedness, we also need to take into considera-

tion the variance of network connectedness, defined as σ2
β = limn→∞ 1

n

∑
i

(
Wn

i

s2
− β

)2
. The

variable σβ is thus a measure of the spread of individual connectedness in the network. If

some agents are much more connected than others, σβ will be large, whereas if all agents

have very similar connectedness σβ will be small. We have

Proposition 9 Consider the large-economy equilibrium characterized by Theorem 1, satis-

fying Assumption 4.

(a) The individual trading volume, ψunsignedi (Wi), is an increasing, concave function of

connectedness with asymptote,

ψunsignedi (Wi) ∼Wi

√
2Δ2σ2(β2σ2 +Δ4σ2 +Δ2 + 2Δ2βσ2)

π(β2σ2 +Δ2 +Δ2βσ2)2

for large Wi.

(b) The aggregate trading volume, ψmarket, is increasing in network connectedness (β), in

markets with low variance of network connectedness (σ2
β), and is decreasing in network

connectedness in markets with high variance of network connectedness.

(c) The aggregate trading volume, ψmarket, is increasing in the variance of network con-

nectedness, σ2
β.

Trading volume of individual agents is thus increasing in connectedness, with a higher

slope for low degrees of connectedness. Moreover, it directly follows from Proposition 5

that trading profits and trading volume move together, i.e., higher trading volume leads

to higher profits. The relationship is stronger for agents with high trading volume, since

trading volume is a concave function of connectedness, whereas expected profits is a linear

function of connectedness. The aggregate trading volume, on the other hand, can be either

23Alternatively, we could have defined aggregate trading volume as limn→∞ 1
nE[

∑
i |ψi|]. Such a definition

is qualitatively similar to ours — although, contrary to an individual’s trading volume, not identical — but
complicates the analysis considerably.
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increasing or decreasing in network connectedness. However, aggregate trading volume is

always increasing in the variance of network connectedness. This is in line with the idea

that information asymmetries across the trading population drive trading volume.

3.4 Welfare

In this section, we analyze the welfare implications of information networks. We base the

analysis on the certainty equivalent of utility that an agent derives from trading in the

market.24 The ex ante certainty equivalent for an agent is CE(W ), where W is the agent’s

connectedness. This is the certainty equivalent, before the agent receives any information

about the risky asset payoff. We distinguish this from the ex interim certainty equivalent,

which is the certainty equivalent after an agent has received his information and traded but

before the risky payoff is realized.

A closed form expression for the average ex ante certainty equivalent is given by:

Proposition 10 Consider the large-economy equilibrium characterized by Theorem 1. As-

sume that assumptions 1, 2 and 4 hold.

(a) For agent i, satisfying assumption 3, the ex ante certainty equivalent is

CE(Wi) =
1

2
log

(
(Δ2 + (β +Δ2)2σ2) (β2s2σ2 +Δ2s2 +WiΔ

2σ2)

s2(β2σ2 +Δ2 +Δ2βσ2)2

)
. (18)

(b) The average ex ante certainty equivalent across agents is

CE =
∑
j

CE(j)d(j). (19)

We will use Proposition 10 to analyze which networks are welfare optimal in the sense that

they maximize the average certainty equivalent, taking into consideration possible costs

involved in forming network connections. This is the first-best optimal solution that would

occur in a centralized economy, in which a central planner, who has the power to redistribute

wealth, chooses the network on behalf of the agents.

We first analyze which networks optimize the average certainty equivalent for the special

case when there are no costs associated with link formation. As we shall see, the analysis is

then easily extended to more general cost functions. From (19) it follows that maximizing the

average certainty equivalent, CE, over networks is equivalent to maximizing it over network

24A natural interpretation of the random asset supply, Z̃, is that it is due to noise trading. Therefore, it
can be argued that the welfare of noise traders is not taken into account in our analysis. We are particularly
interested in the welfare of rational agents, because we would like to understand how rational agents, who
can coordinate their actions and assign a central planner to choose the information network for them, would
behave.
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degree distributions. We solve the maximization problem in two steps: We first maximize

the average certainty equivalent over network degree distributions with the same network

connectedness. To that end, we define CE
∗
(β) as the maximum value of

∑
j CE(j)d(j)

attained over all networks which have connectedness β (as defined in (11)), and satisfy

Assumption 1 and the conditions in Theorem 1. We then maximize CE
∗
(β) over all feasible

β’s (that is, over β ≥ 1
s2
), to get the globally optimal solution.

Define the support of a degree distribution, d, as supp[d] = {j : d(j) > 0}. We have:

Proposition 11 Assume that assumptions 2 and 4 hold.

(a) For β ∈ N, CE
∗
(β) is attained by a network with degree distribution d, if and only if

supp[d] = {β}.

(b) For β ∈ R+\N, CE∗
(β) is attained by a network with degree distribution d, if and only

if supp[d] = {�β�, �β�}, d(�β�) = β − �β�, and d(�β�) = 1− β + �β�.

(c) CE
∗
(β) is either everywhere decreasing in β, or initially increasing in β and eventually

decreasing, and attains a unique maximum.

We obtain an unambiguous ranking of information networks through Proposition 11.

Uniform networks achieve a higher average certainty equivalent compared to non-uniform

networks with the same degree of connectedness. Moreover, among uniform networks, the

average certainty equivalent is either decreasing in β or hump-shaped, with a unique maxi-

mum. Therefore, the maximum average certainty equivalent is either achieved by a network

in which no agent shares information, or by one where all agents basically have the same

finite number of connections.

The results in Proposition 11 are quite intuitive. The intuition for part (c) is similar to

that for our result on trading profits, discussed in Section 3.2. If agents, on average, receive

too much information, the informational rents are competed away. If agents receive too

little information, on the other hand, the uncertainty about the final payoff is high, which

adversely affects risk averse agents’ expected utilities. The optimum typically lies somewhere

in-between. Parts (a) and (b) of Proposition 11 follow from the certainty equivalent of an

agent being a concave function of his connectedness. Given the total information rents in the

economy – which depend on average connectedness, β – any asymmetry in how these rents

are divided between agents will lead to a lower average certainty equivalent, since CE(Wi)

is concave.

In practice, we would expect link formation to be costly. For example, expanding one’s

social network is time consuming and may also carry monetary costs, e.g., the costs of

joining a posh golf club to connect with other investors, or the costs of moving to and living

in New York City to interact with investment bankers. Even if links are interpreted as

those linked using or accessing the same information source, a cost may be motivated. For
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example, companies like Forrester Research, Inc. charge for their research — an example of

proprietary costly information that is shared between a subgroup of the population, namely

the subscribers. We therefore extend our earlier analysis to an environment where link

formation is costly.

We let f(W ) denote an agent’s cost of having W connections, and assume that f(1) = 0

— an agent is always connected to himself, which carries no cost. It is natural to assume

that more links will be more costly, so we have fW > 0. We also assume that the cost is

(weakly) convex in the number of links, i.e., that fWW ≥ 0.25 We argue that the marginal

cost for an additional link should be increasing, at least eventually, since agents have finite

resources and capabilities for link formation (e.g., limited time, social barriers).

In the case with non-zero costs for link formation, the social planner’s generalized welfare

optimization problem is to maximize∑
j

(
CE(j)− f(j)

)
d(j) (20)

over all networks that satisfy assumption 1 and the conditions in Theorem 1. We have:

Proposition 12 Assume that assumptions 2 and 4 hold. Then, there is a network that

maximizes (20). Moreover, any network that maximizes (20) has a degree of connectedness

β <∞ and a degree distribution with supp[d] ⊂ {�β�, �β�}.

Proposition 12 thus shows that Proposition 11-(c) can be extended to general weakly

convex cost functions, f . The intuition for the result is identical to that of Proposition 11,

once it is noted that CE − f is concave when CE is concave and f is convex.

4 Potential extensions and alternative assumptions

Our model of information networks is, of course, very stylized. In this section we discuss

potential extensions and variations of the model, and further justify the assumptions we

have made. For some of the extensions, the resulting effects are quite clear, whereas other

parts of our discussion is speculative, opening up for future research.

In the model, we assume that network connections are bi-directional, that is, if agent i

learns from j, then agent j also learns from i. In practice, there are many situations where

one agent learns from the other but not vice versa. Technically, an information network

with unidirectional connections will have a neighborhood matrix that is asymmetric, say

Was. In principle, it is straightforward to generalize the current analysis to networks with

unidirectional connections. Given a sequence of symmetric neighborhood matrices, Wn,

25For simplicity we require that f(W ) is a twice continuously differentiable function in R+, even though
W belongs to the set of natural numbers.
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that satisfies (1)-(3) and the conditions of Theorem 1, it follows immediately that the same

conditions also hold for the neighborhood matrices, Wn
as, that are constructed by deleting

some links ofWn unilaterally. This implies that the existence of a large-economy equilibrium

with a unidirectional network can be easily established following the same proof method

applied for Theorem 1. Much of the subsequent analysis is then straightforward.

Another assumption we make is that every agent is a price taker, an assumption that is

rationally motivated in a “large” economy in which each agent is “small.” In a large economy,

agents have no incentive to not share information with their neighbors, nor do they have an

incentive to lie about their private information, since they know that their neighbors have no

price impact. In a “smaller” economy, where individual agents do impact prices, however, an

incentive to hoard information exists. A full analysis of what happens in such an economy

is outside the scope of this paper, but we can make some qualitative arguments.

Consider a small economy in which agents are non-price-takers and can credibly commu-

nicate information (i.e., they can commit not to lie). Two agents may agree to bilaterally

share information as long as the marginal benefit of receiving information outweighs the

marginal cost of higher price competition that follows from information sharing. Since price

impact increases the cost of price competition, the marginal cost of link formation in the

small economy is higher than in the one studied in Section 3.4. We would therefore expect

the degree of connectedness to be lower in the small economy than in the large economy.

If agents can not credibly communicate information, they have an incentive to lie and

the previous argument breaks down. In a dynamic setting, it may still be possible to have

information sharing. For example, in an infinitely repeated game version of our model,

an agent may be able to punish a neighbor who provides incorrect information. In the

simplest case, where information is ex post verifiable after each time period, a grim trigger

strategy where an observed lie is punished by perpetually cutting the link, agents may find

it optimal to truthfully share information. Even if information is not ex post verifiable, a

punishment strategy based on statistical inference would also severely limit the opportunities

to deviations from truth-telling in the long run.

In summary, the analysis becomes much more complex when agents have price impact

and there are interesting open questions in this setting, although the basic intuition for the

effects that will come into play is quite clear.

One can also consider an economic environment where agents sell (rather than share)

information to those with whom they are connected. Because of the externalities associated

with information diffusion, and the global character of agents’ optimization problems, the

analysis of such an environment — although potentially very interesting — would be ex-

tremely complex. At the margin, however, the costs and benefits of selling information is

clear. The benefit to the seller is the fee that the buyer is willing to pay for information,

which is bounded above by the benefits the buyer receives from it. The cost to the seller of

each sale has two parts: first, the cost of increased price competition from the buyer gener-
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ated by the information he receives, and, second, the lower fee the seller’s other connections

are willing to pay because the information gets shared more broadly.

It may also be possible to extend our model to multiple risky assets, along the lines

of Admati (1985), but with information networks. Here we can only speculate about the

interesting effects such an extension might lead to. Admati (1985) allows for general cor-

relation patterns across asset payoffs, but assumes that signal error terms are independent

across agents. As we elaborated on in Section 2.2, information networks introduce corre-

lation across agents’ information error terms in a tractable fashion. Therefore, they may

lead to interesting correlation patterns across equilibrium prices of assets. For instance,

two assets with uncorrelated payoffs may have highly correlated prices due to information

networks. Such an outcome would be consistent with the observed “excess co-movement”

phenomenon. Moreover, the pattern of price co-movement would be affected by the network

topology, since the signal error terms of highly connected agents would affect prices, and

hence their correlations, more than those of agents with few connections.

Another possible extension is to make the current model dynamic so that there are

multiple trading opportunities and gradual information diffusion over time. For example,

consider a T -period version of the model, where information diffuses according to the rule

that after t periods each agent gets to see the information of agents at a distance not further

away than t in the network. Such an extension, which may be carried out along the lines of

Vives (1995), would potentially explain some of the stylized facts about asset price dynamics

discussed in the introduction. Specifically, gradual diffusion of an information shock may

lead to large price movements over time, unrelated to public news. Further, interesting time

variations in trading volume and price volatility would most certainly arise, as an information

shock propagated through a network.

Finally, we note that we have made some strong assumptions about the efficiency with

which agents share information, namely that each agent shares his private information com-

pletely only with his immediate neighbors but not at all with more distant agents. In

practice, such an assumption may be too strong. First, some private information may be

difficult to share (even if an agent wants to share it), and second, once information is shared

with neighbors, it may be inferred by others who are not in that neighborhood. One could,

for example, assume that agents receive noisy signals from agents in their neighborhood and

that signals become more noisy with distance. Technically, this extension would lead to a

redefinition of the neighborhood matrix, W, that would take into account increasing noise

with distance. The, already high, number of degrees of freedom in the model would increase

significantly, but it is clear that, qualitatively, the model would not change. In fact, our

freedom in choosing the network relation already gives us some freedom. With the network

relation Ê , as defined in section 2.3, information spreads perfectly up to (but not beyond) a

distance of two. Other variations are also possible within our framework. For example, one

could assume that an agent gets perfect signals from one half of the agents at a distance of
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two, one quarter of the agents at a distance of three, and so on. This would be one possible

way of modeling an economy in which signals travel long distances, albeit imperfectly.

5 Empirical implications

Our model suggests that the structure of information networks is important, both at the

individual level, where individuals’ positions in the network affect their behavior and profits,

and in the aggregate, where aggregate network properties affect asset pricing features.

Empirically, it has been extensively verified that social networks are important in ex-

plaining individuals’ economic behavior, e.g., in the studies by Myers and Shultz (1951) and

Reiss and Shultz (1970) (labor markets), Uzzi (1996) (industrial relationships), Fafchamps

and Lund (2003) (risk sharing), and in the more recent finance-focused studies by Hong,

Kubik, and Stein (2004) and Ivković and Weisbenner (2007). In what follows, we outline

how the predictions of our model can be tested.

Testing the model’s predictions requires a way to identify information networks in fi-

nancial markets. We propose two distinct approaches for the identification of information

networks. The first approach makes use of information about individual households to build

a proxy for network connections. The second approach identifies networks indirectly, based

on the similarities of agents’ trades or portfolio holdings. We discuss each of these approaches

below in turn.

The first proposed approach relies on extensive datasets which provide detailed infor-

mation at the individual household level. One potential dataset that can be employed is

the Swedish dataset used by Calvet, Campbell, and Sodini (2007). The dataset comes from

the Swedish government database for tax records and it covers the entire population over

an extended time period. The dataset contains household information such as residential

address, education level, employer, and demographic data, which can be used to create a

proxy for social network connections between households. The dataset also contains house-

hold information on holdings of financial securities and bank accounts which are useful for

testing the model’s predictions about individual investors’ trading behavior.26

The second proposed approach identifies information networks from agents’ portfolios,

using the property that the more similar the portfolio strategies of two individuals, the closer

these two individuals are in the information network (i.e., the higher the number of neighbors

they have in common; see Proposition 8). For example, agents who tend to trade in the same

stock at similar points in time can be inferred to be close. Using datasets which contain

26Other similar datasets are the LINDA dataset used in Massa and Simonov (2006), which contains detailed
personal and financial information for about 3% of the Swedish population, the Finnish Central Securities
Depositary dataset used in Grinblatt and Keloharju (2000) and Grinblatt and Keloharju (2001), which is a
comprehensive panel on Finnish stockholdings, and the dataset used in Ivković and Weisbenner (2007), which
contains common-stock investments of 35,673 U.S. households made through a large discount brokerage in
the period from 1991 to 1996.
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complete trade-by-trade information at the individual investor level over an extensive time

period, the network structure could therefore be inferred. Such datasets were, e.g., studied

in Barber, Lee, Liu, and Odean (2009) and in Aragon, Bildik, and Yavuz (2007). A similar

approach would be to use the correlation between portfolio holdings to provide a network

distance proxy, in line with what is done in the recent empirical study by Pareek (2009), who

uses correlations between mutual fund managers’ portfolio holdings to identify information

networks.

Given an empirical information network, identified by one of the methods proposed above,

we can estimate individual and aggregate connectedness measures, namely Wi and β. These

measures can be used to test whether a power-law distribution, verified in numerous empirical

studies of networks in different social contexts, provides a valid approximation for the degree

distribution of information networks among traders. The estimated individual connectedness

measure Wi can then be used to directly test the model’s predictions on individual investors’

trading behavior. The empirical predictions listed below follow from the results derived in

Section 3.

Prediction 1 (a) Investors with higher connectedness, Wi, earn higher profits.

(b) Investors with higher connectedness, Wi, trade more aggressively.

(c) Investors who are closer in the information network have more correlated trades.

(d) The distribution of investors’ trading profits is an affine function of the degree distri-

bution of the information network.

(e) The trading volume distribution of investors is an increasing concave function of the

degree distribution of the information network.

Several empirical studies lend indirect support to predictions listed above. Hau (2001) inves-

tigates the implications of informational asymmetries across trader population for trading

profits: the paper proxies informational advantage of traders by their geographical proxim-

ity to corporate headquarters of equities they trade in and then shows that informationally

advantaged traders enjoy higher proprietary trading profits. Hau’s finding is consistent with

Prediction 1-(a). Dorn, Huberman, and Sengmueller (2008) show that correlated trading is

greater in heavily traded stocks. This finding is in line with (b) and (c) of Prediction 1:

stocks with dense and tight-knit information networks should exhibit both higher correlated

trading and higher trading volume. Empirical validation of Prediction 1 would shed new

light on findings of Hau (2001) and Dorn, Huberman, and Sengmueller (2008).

Also, the estimated network connectedness measure β can be used to test the asset pricing

implications of the model, following the results derived in Section 3.
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Prediction 2 (a) Price volatility is high in markets with an intermediate level of network

connectedness, β. It is lower in markets with high or low levels of network connected-

ness.

(b) Trading profits are high in markets with an intermediate level of network connectedness,

β. They are lower in markets with high or low levels of network connectedness.

(c) Aggregate trading volume is high in markets with high variance of network connected-

ness.

Empirical validation of Prediction 2 would indicate that information networks provide an

important determinant of the aggregate behavior of financial markets. The prediction could

be tested by comparing aggregate implications across markets. Different markets may inter-

preted as different asset classes (e.g., stocks versus commodities), different exchanges (e.g.,

NYSE versus NASDAQ), different stock types (e.g., value versus glamor stocks), or even dif-

ferent individual stocks. Comparisons may also be made across geographical regions (within

a country or across countries). Gomez, Priestley, and Zapatero (2009) find that U.S. firms in

regions with low population density have higher (risk adjusted) returns than firms in regions

with high population density. They interpret this as an effect of relative wealth concerns

of investors. However, this finding is also consistent with our model: it is reasonable to ex-

pect that population density is related to information network connectedness since densely

populated regions tend to exhibit higher connectedness in social networks. Interestingly,

the effect found in Gomez, Priestley, and Zapatero (2009) is non-monotone: Excess returns

are lowest in the highest population density regions (New England and Middle Atlantic; see

their Table 2 and Table 3 – panel A), but are not highest in the most sparsely populated

regions (Mountain and West North Central). Instead, the highest excess returns are found in

regions with intermediate population density (West South Central, Pacific and East South

Central). This is in line with our Prediction 2-(b).

6 Concluding remarks

The properties of information networks have profound impact on asset prices. We have

introduced a simple, parsimonious rational expectations equilibrium model with large in-

formation networks, in which the relationship between network properties and asset pricing

can be conveniently analyzed. Our model suggests that various network metrics, such as

connectedness and centrality, come into play in the analysis of information flow in financial

markets. On the aggregate level, these network metrics affect asset prices, volatilities, trad-

ing volume and welfare in non-trivial ways. Our model therefore takes a first step towards

an information network based explanation of observed price behavior, and of time varying

volatility and trading volume in financial markets.
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Appendix

Proof of Theorem 1: We prove the result for the case when (10-11) hold surely. The proof is
identical for the case stated in the theorem, when the conditions only hold in probability.

For the economy with n agents, we decompose the covariance matrix, S, into column vectors,
S = [s1, . . . , sn], and also define the scalars s2i = [S]ii = s2/[W]ii. We are interested in the existence
of a linear NREE for a fixed n. Following the analysis Hellwig (1980), it is clear that, given a pricing
relationship (8) and demand functions of the form (9), and multivariate conditional expectations
on the form

E[X̃ |Ii] = α0i + α1ix̃i + α2ip̃, (21)

var(X̃ |Ii) = βi, (22)

agent i’s demand function (under rational expectations) is on the form

ψi(x̃i, p) =
1

βi
(α0i + α1ix̃i + (α2i − 1)p̃) . (23)

The market clearing condition now gives.

π0 = γ

n∑
i=1

α0i

βi
, (24)

πi = γ
α1i

βi
, (25)

where

γ =

(
n∑
i=1

1− α2i

βi

)−1

. (26)

When we wish to stress the dependence on n, we write πn0 , π
n
i and γn, respectively. We define

the vector π = (π1, . . . , πn)
T . The projection theorem for multivariate normal distributions, given

a linear pricing function, now guarantees multivariate conditional distributions, and the following
relations

α0i =
X̄

bi

(
s2i (π

TSπ + γ2n2Δ2)− (πT si)
2
)− α2i(π0 − γnZ̄), (27)

α1i =
σ2

bi

(
πTSπ + γ2n2Δ2 − (1Tπ)(πT si)

)
, (28)

α2i =
σ2

bi

(
(1Tπ)s2i − (πT si)

)
, (29)

βi =
σ2

bi

(
s2i (π

TSπ + γ2n2Δ2)− (πT si)
2
)
, (30)

and where we have defined

bi = (σ2 + s2i )
(
πTSπ + n2Δ2γ2 + (1Tπ)2σ2

)− ((1Tπ)σ2 + (πT si)
)2
. (31)

Thus, given a π and a scalar, γ �= 0, which — when {α1i}, {α2i}, {βi} and {bi} are defined via
equations (27-31) — satisfy equations (25) and (26), this generates a NREE, where π0 can be

29



defined via (24).
Elimination of {α1i}, {α2i}, {βi} and {bi} now gives

πi = γ
πTSπ + γ2n2Δ2 − (1Tπ)(πT si)

s2i (π
TSπ + γ2n2Δ2)− (πT si)2

, (32)

and by defining q = π/γ (also denoted by, qn, when we wish to stress the size of the vector) we
get a system of equations that does not depend on γ:

(q)i =
1

s2i
× qTSq+ n2Δ2 − (1Tq)(qT si)

qTSq+ n2Δ2 − (qT si)2/s2i
. (33)

Given q, we get

1

γ
=

n∑
i=1

σ2 + s2i
σ2s2i

+

n∑
i=1

(1Tq− sTi q)
2 − 1

γ (1
Tq− sTi q

s2i
)

qTSq+ n2Δ2 − (sTi q)
2

s2i

, (34)

which leads to

γ =

1 +
∑n

i=1

(1Tq− sTi q

s2
i
)

qTSq+n2Δ2− (sT
i

q)2

s2
i∑n

i=1
σ2+s2i
σ2s2i

+
∑n

i=1
(1Tq−sTi q)

2

qTSq+n2Δ2− (sT
i

q)2

s2
i

, (35)

which is bounded, since S is strictly positive definite. From (24) and the definition of q, we also
have

π0
γ

=
X̄n

σ2
−
(
π0
γ

− nZ̄

)
γ ×

∑
i

(1Tπ)s2i − (πT si)

s2i (π
TSπ + γ2n2Δ2)− (πT si)2

(36)

leading to

π0 = γn

(
X̄
σ2 + Z̄A

1 +A

)
, (37)

where

A = γ
∑
i

(1Tπ)s2i − (πT si)

s2i (π
TSπ + γ2n2Δ2)− (πT si)2

=

n∑
i=1

(1Tq)s2i − (qT si)

s2i (q
TSq+ n2Δ2)− (qT si)2

. (38)

Thus, if the system of equations defined in (33) has a solution, it will generate a NREE. To
show that a solution indeed exists for large enough n, we define

y
def
= s2D−1q, (39)
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and the vector d, with (d)i = Dii (We also use the notation yn when we wish to stress the size of
the vector). Clearly, the condition that q satisfies (33) is equivalent to y satisfying

(y)i =
yTWny + n2Δ2s2 − (dTy)(d)−1

i (Wny)i
yTWny + n2Δ2s2 − (Wny)2i

. (40)

We define the mapping Fn : Rn → R
n by the r.h.s. of (40), so a NREE can be derived from a

solution to y = Fn(y). Now, Fn can be rewritten as:

(F (y))i = 1 +
(Wny)2i /n

2 − (dTy)(d)−1
i (Wny)i/n

2

(yTWny)/n2 +Δ2s2 − (Wny)2i /n
2
. (41)

Clearly, Fn is a continuous mapping, as long as the denominator in (41) is not zero. We are
interested in the properties of Fn for y that are uniformly bounded in infinity-norm, i.e., ‖y‖∞ ≤ C
for some C > 0, regardless of n.

For y uniformly bounded in infinity norm, we have from (10) and Hölder’s inequality (see
Golub and van Loan (1989)), aTb ≤ ‖a‖1‖b‖∞, that yTWny/n2 ≤ ‖y‖1‖Wn‖∞‖y‖∞/n2 ≤
n‖Wn‖∞‖y‖2∞/n2 = no(n)/n2 = o(1).

A similar argument, based on (10), implies that (Wny)i = o(n)/n = o(1), and therefore that
(Wny)2i /n

2 = o(1).

Finally, |(d)−1
i | ≤ 1 and dTy ≤ ‖d‖1 × ‖y‖∞ =

∑
iW

n
ii × ‖y‖∞, and since (11) implies that∑

iW
n
ii = O(n), we altogether get that (dTy)(d)−1

i (Wny)i/n
2 = o(1).

These asymptotic results, together, imply that we know the behavior of Fn for large n, through
(41). For any ε > 0, for n large enough,

y ∈ R
n, ‖y‖∞ ≤ 2 ⇒ |(Fn(y))i − 1| ≤ εΔs2 + εΔs2

−εΔs2 +Δs2 − εΔs2
, (42)

implying that Fn : [0, 2]n → [1 − 4ε, 1 + 4ε]n. Because the denominator of (40) is not zero in this
case, we therefore have a continuous mapping Fn : [1 − 4ε, 1 + 4ε]n → [1 − 4ε, 1 + 4ε]n which, by
Brouwer’s theorem implies that there there is a y ∈ [1 − 4ε, 1 + 4ε]n that solves (40) and thereby
provides a NREE.

We have thus shown that for all n ≥ n0 for some large n0, there is a NREE, defined by yn,
such that

lim
n→∞ ‖yn − 1n‖∞ = 0. (43)

We now use this result to derive expressions for π0, π and γ, using equations (39), (35) and (36).
We have from (39), (43) and (11)

lim
n→∞

1Tnqn
n

= lim
n→∞

(Wn)ii(yn)i
s2n

= β. (44)

Moreover, using (39) (43) and (10), a similar argument shows that

lim
n→∞

sTinqn

n
= 0, (45)

for any sequence of in, where 0 ≤ in ≤ n, and similarly, via (10),

lim
n→∞

qTnSqn
n2

= 0. (46)
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We therefore have from (35)

γ∗ = lim
n→∞n×

1 +
∑n

i=1

(1Tq− sTi q

s2
i
)

qTSq+n2Δ2− (sT
i

q)2

s2
i∑n

i=1

(
1
s2i

+ 1
σ2

)
+
∑n

i=1
(1Tq−sTi q)

2

qTSq+n2Δ2− (sT
i

q)2

s2
i

= lim
n→∞n× 1 +

∑n
i=1

βn−0
0+n2Δ2−0

nβ + n
σ2 +

∑n
i=1

(βn−0)2

0+n2Δ2−0

= lim
n→∞n× 1 + βn2

n2Δ2

n(β + 1
σ2 + (βn)2

n2Δ2 )

=
1 + β

Δ2

β + 1
σ2 + β2

Δ2

=
σ2Δ2 + βσ2

βσ2Δ2 +Δ2 + β2σ2
.

Similarly, by defining π∗ def
= limn→∞

∑n
i=1 π

n
i , we get

π∗ = lim
n→∞ γ∗

n∑
i=1

(Wn)ii(yn)i
s2n

= γ∗β.

We need to show that
∑n

i=1 π
n
i η̃i →p 0. Clearly, via Hölder’s inequality and (10), we have

V ar

(
n∑
i=1

πni η̃i

)
= (γn × n)2

1TnW
n1n

n2

≤ (γn × n)2
‖1n‖1‖Wn‖∞‖1n‖∞

n2

= ((γ∗)2 + o(1)) × no(n)

n2
→ 0,

so by Chebyshev’s inequality, it is clear that
∑n

i=1 π
n
i η̃i →p 0.

Finally, from (38), it is clear that A approaches

n× n(β − 0)

n2(0 + Δ2 − 0)
=

β

Δ2
,

so through (37), it is clear that π0 converges to

γ∗
(

X̄
σ2 + Z̄ β

Δ2

1 + β
Δ2

)
,

which after multiplying the denominator and numerator with σ2Δ2 leads to the form in (15). We
are done.

We stress, again, that the derivation goes through step-by-step if conditions (10-11) are ex-
pressed in probability instead.
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Proof of Proposition 1: We construct a growing sequence of “caveman” networks that converge to
a given degree distribution. A caveman network is one which partitions the set of agents in the
sense that if agent i is connected with j and j is connected with k, then i is connected with k (see
Watts (1999)).

We proceed as follows: First we observe that for d(1) = 1, the result is trivial, so we assume
that d(1) �= 1. For a given d ∈ S∞, define k = mini{i �= 1 : i ∈ supp[d]}. For m > k, we

define d̂m ∈ Sm by d̂m(i) = d(i)/
∑m

j=1 d(j). Clearly, limm→∞
∑m

i=1 |d̂m(i) − d(i)| = 0. For an

arbitrary n ≥ k3, choose m = �n1/3�. For 1 < � ≤ m, � �= k, choose zn
 = �d̂m(�) × n/��, and
znk = �(n −∑
 	=k z

m

 �)/k�.

Now, define Gn as a network in which there are zn
 clusters of tightly connected sets of agents,

with � members, 1 < � ≤ m and n−∑m

=2 �z

n

 singletons. With this construction, |zn
 �/n− d̂m(i)| ≤

�/n for � > 2 and � �= k. Moreover, |zn1 /n− d̂m(1)| ≤ (k+1)/n, and |znk k/n− d̂m(k)| ≤ (k+1)/n+

m2/n, so
∑m


=1 |zn
 �− d̂m(�)| ≤ 2(k + 1)/n + 2m2/n = O(n−1/3).

Thus,
∑
n1/3�

i=1 |dn(i) − d̂
n1/3�(i)| → 0, when n → ∞ and since
∑
n1/3�

i=1 |d̂
n1/3�(i) − d(i)| → 0,
when n→ ∞, this sequence of caveman networks indeed provides a constructive example for which
the degree distribution converges to d.

Moreover, it is straightforward to check that if d(i) = O(i−α), α > 1, then (10) is satisfied in
the previously constructed sequence of caveman networks, and that if α > 2, then (11) is satisfied.

If d(i) ∼ i−α, α ≤ 2, on the other hand, then clearly
∑

i d(i)i = ∞, so (11) will fail.

Proof of Proposition 2: We first show the form for β. We have:

lim
n→∞

∑n
k=1(W

n)ii
s2n

= lim
n→∞

∑
k

k × cnαk
−α

= ζ(α)−1
∞∑
k=1

k−(α−1) = ζ(α)−1ζ(α− 1).

For (10), we notice that for a network with n = mα nodes, the maximum degree, (Wn)ii will
not be larger than m. However, since each of the neighbors to that node has no more than m
neighbors, ‖Wn‖∞ =

∑
j(W

n)ij ≤ m2 = n2/α = o(n) when α > 2.

Proof of Proposition 3: It follows from Theorem 1 that

(π∗)2σ2 =
β2
(
β +Δ2

)2
σ6

(Δ2 + β (β +Δ2) σ2)2
, (47)

(γ∗)2Δ2 =
Δ2
(
β +Δ2

)2
σ4

(Δ2 + β (β +Δ2) σ2)2
, (48)

var(p̃) =

(
β +Δ2

)2
σ4
(
Δ2 + β2σ2

)
(Δ2 + β (β +Δ2) σ2)2

. (49)

(47) implies that

∂ (π∗)2σ2

∂β
=

2βΔ2
(
β +Δ2

) (
2β +Δ2

)
σ6

(Δ2 + β (β +Δ2)σ2)3
> 0,

and this proves part (a).
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(48) implies that

∂ (γ∗)2Δ2

∂β
=

2Δ4
(
β +Δ2

)
σ4 − 2Δ2

(
β +Δ2

)3
σ6

(Δ2 + β (β +Δ2) σ2)3
.

The expression above is strictly negative if and only if β > Δ
σ −Δ2. This proves part (b).

Finally, (49) implies that

∂ var(p̃)

∂β
=

2Δ4
(
β +Δ2

)
σ4 − 2Δ2

(−β3 + 2βΔ4 +Δ6
)
σ6

(Δ2 + β (β +Δ2)σ2)3
.

The expression above is strictly positive if and only if Δ2 < 1−βσ2

2σ2 + 1
2

√
1−2βσ2+5β2σ4

σ4 . This proves

part (c).

Proof of Proposition 4: It is straightforward from Theorem 1 and the projection theorem that

var
(
X̃
∣∣p̃) = σ2 −

(
β σ2Δ2+σ2β
βσ2Δ2+Δ2+β2σ2σ2

)2
(
β σ2Δ2+σ2β
βσ2Δ2+Δ2+β2σ2

)2
σ2 +

(
σ2Δ2+σ2β

βσ2Δ2+Δ2+β2σ2

)2
Δ2

=
Δ2σ2

Δ2 + β2σ2
.

Hence the result follows.

Proof of Proposition 5: From (23), we know that agent i’s demand will take the form

ψi(x̃i, p̃) =
α0i

βi
+
α1i

βi
x̃i +

(
α2i

βi
− 1

βi

)
p̃.

Similar arguments as in the proof of Theorem 1 shows that

α0i

βi
=
X̄

σ2
−
(
π0
γn

− Z̄

)
Ai,
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where Ai = γn (1Tπ)s2i−(πT si)
s2i (πTSπ+γ2n2Δ2)−(πT si)2

converges to β
Δ2 for large n. Therefore

α0i

βi

n→∞−−−→ X̄Δ2 + Z̄βσ2

σ2Δ2 + σ2β
,

α1i

βi
=

πTSπ + γ2n2Δ2 − (1Tπ)(πT si)

s2i (π
TSπ + γ2n2Δ2)− (πT si)2

n→∞−−−→ 1

s2i
=

Wi

s2
,

α2i

βi
=

(1Tπ)s2i − (πT si)

s2i (π
TSπ + γ2n2Δ2)− (πT si)2

n→∞−−−→ β

Δ2γ∗
.

Similarly, we have

1

βi
=

(σ2 + s2i )
(
πTSπ + n2Δ2γ2 + (1Tπ)2σ2

)− ((1Tπ)σ2 + (πT si)
)2

σ2
(
s2i (π

TSπ + γ2n2Δ2)− (πT si)2
)

=
(σ2 + s2i )

(
qTSq/n2 +Δ2 + (1T q)2σ2/n2

)− ((1T q)σ2 + (qT si)
)2
/n2

σ2
(
s2i (q

TSq/n2 +Δ2)− (qT si)2/n2
)

n→∞−−−→ (σ2 + s2i )
(
Δ2 + β2σ2

)− (βσ2)2

σ2s2iΔ
2

=
1

s2i
+

1

σ2
+
β2

Δ2
. (50)

Thus,

ψi(x̃i, p̃) =
X̄Δ2 + Z̄βσ2

σ2Δ2 + σ2β
+
Wi

s2
(x̃i − p̃) +

(
β

Δ2γ∗
− 1

σ2
− β2

Δ2

)
p̃.

Since

β

Δ2γ∗
− 1

σ2
− β2

Δ2
=

β(βσ2Δ2 +Δ2 + β2σ2)

Δ2(σ2Δ2 + σ2β)
− Δ4 + βΔ2

Δ2(σ2Δ2 + σ2β)
− β2σ2(Δ2 + β)

Δ2(σ2Δ2 + σ2β)

= − Δ2

σ2(Δ2 + β)
,

the expression for the demand function reduces to

ψi(x̃i, p̃) =
X̄Δ2 + Z̄βσ2

σ2Δ2 + σ2β
− Δ2

σ2(Δ2 + β)
p̃+

Wi

s2
(x̃i − p̃), (51)

Expected profits are of the form E[ψi(x̃i, p̃)(X̃ − p̃)], and therefore (17) immediately follows.

Proof of Proposition 6: We define the average expected profit in economy n,

Πn =

∑n
i=1E

[(
X̃ − p̃n

)
ψni (x̃

n
i , p̃

n)
]

n
.
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From Theorem 1, we know that the market clearing condition
∑n

i=1 ψi(x̃i, p̃)/n ≡ Z̃n. We therefore
have

Πn = E
[(
X̃ − p̃n

)
Z̃n

]
= E

[(
X̃ − πn0 −

n∑
i=1

πni (X̃ + η̃ni ) + γnZ̃n

)
Z̃n

]

=

(
1−

n∑
i=1

πni

)
E
[
X̃Z̃n

]
− πn0E

[
Z̃n

]
+ γnE

[
Z̃nZ̃n

]

=

(
1−

n∑
i=1

πni

)
X̄Z̄ − πn0 Z̄ + γn(Δ2 + Z̄2)

n→∞−−−→ (1− π∗)X̄Z̄ − π∗0Z̄ + γ∗(Δ2 + Z̄2).

Now, since X̄ = Z̄ = 0 it follows that

Π = γ∗Δ2 =
Δ2
(
β +Δ2

)
σ2

Δ2 + β (β +Δ2) σ2
. (52)

We also have

Πi =
Δ2

σ2(Δ2 + β)

(
(γ∗)2Δ2 − π∗(1− π∗)σ2

)
+
Wi

s2
(
(1− π∗)2σ2 + (γ∗)2Δ2

)
=

Δ4
(
Wi + s2Δ2

)
σ2 +WiΔ

2
(
β +Δ2

)2
σ4

s2 (Δ2 + β (β +Δ2)σ2)2
, (53)

It then follows from (53) that

∂Πi
∂Wi

=
Δ4σ2 +Δ2

(
β +Δ2

)2
σ4

s2 (Δ2 + β (β +Δ2) σ2)2
> 0,

∂Πi
∂β

= −2Δ4
(
s2Δ4 + β

(
W + 2s2Δ2

))
σ4 + 2WiΔ

2
(
β +Δ2

)3
σ6

s2 (Δ2 + β (β +Δ2)σ2)3
< 0.

Hence the proposition follows.

Proof of Proposition 7: (a) It follows from (52) that

∂Π

∂β
=

Δ4σ2 −Δ2
(
β +Δ2

)2
σ4

(Δ2 + β (β +Δ2)σ2)2
.

Observe that the expression above is strictly negative if and only if σ < 1
Δ and β < Δ

σ −Δ2.
This proves part (a).
(b) The decomposition into ΠF and ΠI follows immediately from (52,53). We have

ΠI =
Δ6σ2

β2σ2 +Δ2(1 + βσ2))2
,
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which is positive, decreasing in β and approaches 0 as β tends to ∞.
(c) That ΠF is positive and approaches zero as β → ∞ is immediate since

πF =
βΔ2σ2(β2σ2 +Δ4σ2 +Δ2(1 + 2βσ2))

(β2σ2 +Δ2(1 + βσ2))2
. (54)

Non-monotonicity of ΠF in β can be easily observed from (54).
(d) This follows immediately from (b) and (c) .

Proof of Proposition 8: Following Theorem 1 and (51), we can rewrite agent i’s demand function
as follows:

ψi(x̃i, p̃) = ci +
Δ2(−βs2+Wi)

s2(Δ2+β(β+Δ2)σ2)X̃ + s2Δ2+(β+Δ2)σ2Wi

s2(Δ2+β(β+Δ2)σ2) Z̃ +
∑

k∈W (i) ε̃k
s2 , (55)

where ci is a constant scalar. Thus,

cov (ψi(x̃i, p̃), ψj(x̃j , p̃)) =
(

Δ2(−βs2+Wi)
s2(Δ2+β(β+Δ2)σ2)

)(
Δ2(−βs2+Wj)

s2(Δ2+β(β+Δ2)σ2)

)
σ2

+
(
s2Δ2+(β+Δ2)σ2Wi

s2(Δ2+β(β+Δ2)σ2)

)(
s2Δ2+(β+Δ2)σ2Wj

s2(Δ2+β(β+Δ2)σ2)

)
Δ2 +Wij. (56)

On the other hand, observe from (55) that variance of agent i’s demand, var (ψi(x̃i, p̃)), does not
depend on Wij. Therefore, following (56) we have

∂ corr (ψi(x̃i, p̃), ψj(x̃j , p̃))

∂Wij
=

1√
var (ψi(x̃i, p̃)) var (ψj(x̃j , p̃))

> 0.

Hence we have the desired result.

Proof of Proposition 9:

(a): From (8) and (51) it follows that ψi ∼ N(0, a1 + a2Wi + a3W
2
i ), where a1 = Δ6+β2Δ4σ2

a24
,

a2 = 1
s2

(
1 + 2Δ6σ2

a24

)
, a3 = Δ2σ2(β2σ2+Δ4σ2+Δ2+2Δ2βσ2)

s4a24
, and a4 = β2σ2 + Δ2 + Δ2βσ2. Since,

E[|z̃|] =
√

2A
π for a general normally distributed random variable, z ∼ N(0, A), it follows that

ψunsignedi =

√
2(a1 + a2Wi + a3W 2

i )

π
, (57)

It immediately follows that this function is increasing and concave, with the given asymptotics. It

is also clear that E[ψ2
i ] = var(ψi) + E[ψi]

2 = var(ψi) = a1 + a2Wi + a3W
2
i = π

2 (ψ
unsigned
i )2, so it

is indeed the case that ψunsignedi =
√

2
πE[ψ2

i ].

(b,c):

E

[∑
i

ψ2
i (Wi)d(i)

]
=
∑
i

E[ψ2
i (Wi)]d(i) =

∑
i

(a1 + a2Wi + a3W
2
i )d(i) = a1 + a2s

2β + a3s
4(β2 + σ2β)

= β2 +Δ2 + a3σ
2
β.
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Therefore, ψmarket =
√

π
2 (β

2 +Δ2 + a3σ2β), and ψmarket is increasing in σβ. Moreover, for small

σβ, ψ
market is increasing in β. Also, it is easy to show that ∂a3

∂β < 0, so for large σβ, ψ
market is

decreasing in β.

Proof of Proposition 10: The following lemma ensures that the limit of average certainty equivalents
is equal to the average certainty equivalent in the large economy.

Lemma 1 If Assumption 1 and the conditions of Theorem 1 are satisfied and the function f : N →
R is concave and increasing, then limn→∞

∑n
i=1 d

n(i)f(i) =
∑∞

i=1 d(i)f(i) with probability one.

Proof: Since f is concave, it is clear that f ≤ g, where g(i)
def
= f(1) + (f(2) − f(1))i

def
= c0 + c1i.

From (11), and since f is increasing, it is therefore clear that
∑n

i=1 d
n(i)f(i) ∈ [c0, c0 + c1β + ε],

for arbitrary small ε > 0.
Now, for an arbitrary m and ε > 0, by Assumption 1, for large enough n0, for all n ≥ n0,

|dn(i) − d(i)| ≤ ε
m(c0+c1)

. Also, for large enough m and n′0, for all n ≥ n′0,
∑n

i=m+1 d
n(i)f(i) ≤ ε,

from (11). Finally, from Assumption 1, for large enough m,
∑∞

i=m+1 d(i)f(i) ≤ ε.
Thus, for an arbitrary ε > 0, a large enough m can be chosen and n∗0 = max(n0, n

′
0, n

′′
0) such

that for all n ≥ n∗0,∣∣∣∣∣
n∑
i=1

dn(i)f(i) −
∞∑
i=1

d(i)f(i)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

dn(i)f(i) −
m∑
i=1

d(i)f(i)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=m+1

dn(i)f(i) −
n∑

i=m+1

d(i)f(i)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=n+1

d(i)f(i)

∣∣∣∣∣
≤ ε+ ε+ ε,

and since ε > 0 is arbitrary, convergence follows.

The expected utility in the large economy of an agent with W connections is

U(W ) = E
[
−e−ψi(x̃i,p̃)(X̃−p̃)

]
=

1√
8π3σ2Δ2W/s2

∫ ∫ ∫
−e−ψi(X+ηi,p)(X+ηi−p)− X2

2σ2 − Z2

2Δ2 − η2
i

2W/s2 dXdZdηi

= − s(β2σ2 +Δ2 +Δ2βσ2)√
(Δ2 + (β +Δ2)2σ2)(β2s2σ2 +Δ2σ2 +Δ2σ2W )

,

where the last equality follows by using (12-15,51). Since U(W ) = −e−CE(W ), condition (a)
immediately follows.

Moreover, since the function CE(W ) is increasing and concave in W , from Lemma 1, it is clear
that the average certainty equivalent is as defined in (b).

Proof of Proposition 11: (a) This follows immediately from Jensen’s inequality, since CE(W ) is a
strictly convex function of W ≥ 1.

(b) We first note that the “two-point distribution,” for which a fraction β − �β� of the agents
has �β�+ 1 connections and the rest has �β� connections, has connectedness (β − �β�)(�β� + 1) +
(1−β+�β�)�β� = β, so the two-point distribution is indeed a candidate for an optimal distribution.
Clearly, this is the only two-point distribution with support on {n, n + 1} that has connectedness
β, and for β /∈ N, there is no one-point distribution with connectedness β. We define n = �β�,
qn = 1− β + �β�, qn+1 = β − �β�.

We introduce some new notation. We wish to study a larger space of distributions than the ones
with support on the natural numbers. Therefore, we introduce the space of discrete distributions
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with finite first moment, D = {∑∞
i=0 riδxi

}, where ri ≥ 0, and 0 ≤ xi for all i, 0 <
∑

i ri <∞ and∑
i rixi <∞.27 The subset, D1 ⊂ D, in addition satisfies

∑
i ri = 1.

The c.d.f. of a distribution in D is a monotone function, Fd : R+ → R+, defined as Fd(x) =∑
i≥0 riθ(x − xi), where R+ = {x ∈ R : x ≥ 0}. Here, θ is the Heaviside step function. Clearly,

Fd is bounded: supx≥0 Fd(x) =
∑

i ri < ∞. We use the Lévy metric to separate distributions in
D, D(d1, d2) = inf{ε > 0 : Fd1(x − ε)− ε ≤ Fd2(x) ≤ Fd1(x + ε) for all x ∈ R+}. We thus identify
d1 = d2 iff D(d1, d2) = 0.

For d ∈ D, we define the operation of addition and multiplication: d1 =
∑

i r
1
i δx1

i
, d2 =

∑
i r

2
i δx2

i

leads to d1+d2 =
∑

i r
1
i δx1

i
+
∑

i r
2
i δx2

i
and αd1 =

∑
i αr

1
i δx1

i
, for α > 0. The two-point distribution

can then be expressed as d̂ = qnδn + qn+1δn+1.
The support of a distribution d =

∑
rxδxi

in D is now supp[d] = {xi : ri > 0}. A subset of
D is the set of distributions with support on the integers, DN = {d ∈ D : supp[d] ⊂ N}. For this
space, we can without loss of generality assume that the x’s are ordered, xi = i. The expectation
of a distribution is E[d] =

∑
i rixi and the total mass is S(d) =

∑
i ri. Both the total mass and

expectations operators are linear. Another subset of D, given β > 0, is Dβ = {d ∈ D : E[d] = β}.
Given a strictly concave, function f : R+ → R, we define the operator Vf : D → D, such that

Vf (d) =
∑

i riδf(xi). The function f(x) = CE(x), is, of course, strictly concave R+. Clearly, Vf is
a linear operator, Vf (d1 + d2) = Vf (d1) + Vf (d2).

The second part of the theorem, which we wish to prove, now states that for all d ∈ D1∩DN∩Dβ,

with β /∈ N, if d �= d̂, it is the case that E[Vf (d)] > E[Vf (d̂)]. It turns out that the inequality holds
for any strictly concave function on f : R+ → R. To prove this, we use Jensen’s inequality, which
in our notation reads:

Lemma 2 (Jensen): For any d ∈ D, with support on more than one point, and for a strictly
concave function, f : R+ → R, the following inequality holds: E[Vf (d)] < S(d)E[Vf (δE[d]/S(d))] =
E[Vf (S(d)δE[d]/S(d))].

Now, let’s take a candidate function for an optimal solution, d �= d̂, such that d ∈ D1∩DN∩Dβ.

Clearly, since d̂ is the only two-point distribution in D1 ∩ DN ∩ Dβ , and there is no one-point
distribution in D1 ∩DN ∩Dβ, the support of d is at least on three points.

Also, since qn + qn+1 = 1, and d ∈ D1, it must either be the case that rn < qn, or rn+1 < qn+1,
or both. We will now decompose d into three parts, depending on which situation holds: First,
let’s assume that rn+1 ≥ qn+1. If, in addition, rn+1 > qn+1, then it must be that rn < qn, and
ri > 0 for at least one i < n. Otherwise, it could not be that E[d] = β. In this case, we define
d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and d3 = (rn+1 − qn+1)δn+1 +

∑
i>n+1 riδi. If, on the other

hand, rn+1 = qn+1, then, there must be an i < n such that ri > 0 and also a j > n + 1 such
that rj > 0, since otherwise, it would not be possible to have E[d] = β. In this case, we define,
d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and d3 =

∑
i>n+1 riδi. Exactly the same technique can be

applied in the case of rn ≥ qn and rn+1 < qn+1.
Finally, in the case of rn < qn and rn+1 < qn+1, there must, again, be an i < n such that ri > 0

and a j > n + 1, such that rj > 0, otherwise E[d] = β would not be possible. In this case, we
decompose d1 =

∑
i<n riδi, d2 = rnδn + qn+1δn+1 and d3 = (rn+1 − qn+1)δn+1 +

∑
i>n+1 riδi.

These decompositions imply that

E[Vf (d)] = E[Vf (d1)] + E[Vf (d2)] + E[Vf (d3)]

≤ S(d1)E[Vf (δE[d1]/S(d1))] +E[Vf (d2)] + S(d3)E[Vf (δE[d3]/S(d3))]

= E
[
Vf
(
S(d1)δE[d1]/S(d1) + d2 + S(d3)δE[d3]/S(d3)

)]
= E[Vf (dm)],

27Distribution here is in the sense of a functional on the space of infinitely continuous functions with
compact support, C∞

0 (see Hörmander (1983)), and δx is the Dirac distribution, defined by δx(f) = f(x) for
f ∈ C∞

0 .
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where dm = dL+d2+dR, dL = S(d1)δE[d1]/S(d1) and dR = S(d3)δE[d3]/S(d3). Clearly, dm ∈ D1∩Dβ.

Now, if rn+1 ≥ qn+1, since d ∈ D1, it must be that S(d1) + S(d3) = qn − rn, and since
E[dL + d2 + dR] = β = E[qnδn + qn+1δn+1] it must be that E[dL + dR] = (qn − rn)E[δn] =
E[(S(d1) + S(d2))δn] = E[da], where da = (S(d1) + S(d2))δn. Moreover, since da + d2 has support

on {n, n+ 1} and E[da + d2] = β, it is clear that da + d2 = d̂.
From Jensen’s inequality, it is furthermore clear that E[Vf (dL+dR)] < E[Vf (da)], and therefore

E[Vf (dm)] = E[Vf (dL + dR + d2)] < E[Vf (da + d2)] = E[Vf (d̂)]. Thus, all in all, E[Vf (d)] ≤
E[Vf (dm)] < E[Vf (d̂)]. A similar argument can be applied if rn ≥ qn.

Finally, in the case in which rn < qn and rn+1 < qn+1, we define α = E[d1]/S(d1) and

β = E[d3]/S(d3). Obviously, α < n < n + 1 < β. Now, we can define g1 = β−n
β−α(qn − rn)δα +

n−α
β−α(qn − rn)δβ and g2 = β−n−1

β−α (qn+1 − rn+1)δα + n+1−α
β−α (qn − rn)δβ . Clearly, g1 ∈ D and g2 ∈ D

and, moreover, g1 + g2 + d2 = d1 + d2 + d3 = d. Also, Jensen’s inequality implies that E[Vf (g1)] <
E[Vf ((qn− rn)δn)] and E[Vf (g2)] < E[Vf ((qn+1 − rn+1)δn+1)], so E[Vf (d)] = E[Vf (g1 + g2 + d2)] <

E[Vf ((qn − rn)δn + (qn+1 − rn+1)δn+1 + d2)] = E[Vf (d̂)]. We are done.

(c) From (a,b,18,19) it follows that CE
∗
(β) is of the form CE

∗
(β) = 1

2 log(v(β)), where v(β) =
(Δ2+(β+Δ2)2σ2)(β2s2σ2+Δ2s2+βΔ2σ2)

s2(β2σ2+Δ2+Δ2βσ2)2 . It immediately follows that v′(β) is of the form −v2(β)(c4β4 +
c3β

3 + c2β
2 + c1β + c0), where v2(β) > 0 for all β > 0, c4 > 0, c3 > 0 and c2 > 0, and where

c1 = Δ2 + 4s2 − 3 and c0 = 2Δ2s2σ2 −Δ2σ2 − 1. Moreover, since c4 > 0, it follows that v′(β) < 0
for large β.

From Descartes’ rule of signs, it follows that the maximum number of roots to v′(β) = 0 is
two, and there can only be two roots if c1 < 0 and c0 > 0. The condition c0 > 0 is equivalent
to 2s2 − 1 > 1

Δ2σ2 , which in particular implies that s2 > 1
2 . Similarly, c1 < 0 iff 3 − 4s2 > Δ2σ2,

which in particular implies that s2 < 3
4 . Multiplying these two conditions, we get that a necessary

condition for two roots to be possible is that (3−4s2)(2s2−1) > 1, for s ∈ (1/2, 3/4), but it is easy
to check that (3− 4s2)(2s2 − 1) is in fact less than one in this region. Therefore, it can not be the
case that c1 < 0 and c0 > 0 at the same time, and there can be at most one root to the equation
v′(β) = 0. Since v′(β) < 0 for large β, it must therefore be the case that v(β) is either decreasing
for all β, or initially increasing and then decreasing, with a unique maximum. It is easy to check
numerically that both cases are in fact possible. We are done.

Proof of Proposition 12:
Since f is weakly concave and CE is concave, CE−f is a concave function ofW , and an identical

argument as in the proofs of Proposition 11 (a),(b) can be made to show that a degenerate (i.e.,

uniform) network is optimal. Now, since CE
∗
, as defined in Proposition 11, is decreasing for large

β, it follows that CE
∗ − f is decreasing for large β, so the optimal β must be interior.
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