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Abstract

This paper introduces a model of household consumption and savings in which
household members have imperfectly aligned altruistic preferences. Speci�cally, member
A values his own consumption more than member B values A�s consumption. Each
period, members independently choose the amount of household wealth to consume as
Nash best responses. At each point in time, the household consumes a higher fraction
of wealth than under the full commitment Pareto optimum. Ex-ante Pareto optimal
household consumption plans are not subgame perfect because both members wish
to deviate to increase their own consumption. As a result the household is willing
to pay for a technology that commits them to an optimal lifetime consumption plan.
Despite both members individually having time consistent exponential discount rates,
equilibrium household consumption dynamics are captured by a single representative
agent with a hyperbolic discount factor that is microfounded in the degree of preference
misalignment within the household.
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Are households able to carry out optimal consumption and savings plans? Recent evidence

shows that households value technologies that allow them to commit to increase savings and

that these raise savings rates (Thaler and Benartzi 2004; Ashraf, Karlan, and Yin 2006).

This is inconsistent with standard models of consumption and savings based on individual

maximization. One explanation is that individuals have hyperbolic discount factors or self

control problems that render optimal savings plans time inconsistent so that individuals

will, ex-post, wish to save less than planned (for example: Thaler Shefrin 1981; Laibson

1997; Laibson, Repetto, and Tobacman 1998; Harris and Laibson 2001). This paper takes

a di¤erent approach and shows that the same under-saving and time inconsistency arises

endogenously in a household where the individual members place more weight on the utility

from their own consumption than their partner does. This occurs despite the individual

members of the household being fully rational and having time consistent preferences.

There is abundant evidence that household members do not have perfectly aligned pref-

erences. For example, household consumption decisions are di¤erent when money is received

by one partner or the other (Lundberg, Pollak, and Wales 1997, Phipps and Burton 1998,

Ashraf 2009). In the model I propose here the household is comprised of two members who

each choose how much of the combined household wealth to spend on their own private

consumption. The crucial assumption I make is that household members have imperfectly

aligned altruistic preferences. Speci�cally, member A cares more about the utility from his

consumption than B cares about A�s consumption and vice versa. Both members have the

same exponential time preferences and agree on the optimal savings rate for the household.

I characterize the household�s equilibrium consumption path without commitment as a sub-

game perfect Nash equilibrium in consumption choices. This is the equilibrium that obtains

when household members are unable to enforce contracts conditional on their consumption

choices. The household is unable to carry out the optimal consumption plan ex-post because

both members wish to deviate and increase their own consumption. This intuition is closely
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related to the theoretical literature on dynamic commons problems that has been used to

study national underinvestment (Lancaster 1973, Tornell and Velasco 1992), overexploitation

of natural resources (Levhari Mirman 1980), and sovereign debt (Amador 2008).

The household is willing to pay for a technology that allows them commit to any Pareto

optimal consumption plan. The model allows me to numerically calculate the value of com-

mitment. I show that it is increasing in the degree to which members value their own utility

over their partner�s.

Next I �nd the preferences of a single representative agent that would achieve the same

time path of consumption as the household. This representative agent is shown to have

time preferences with the same exponential discount factor as the household members and

a hyperbolic discount factor. This is despite both household members individually having

the same time consistent exponential discount rates and not being hyperbolic discounters.

The hyperbolic discount factor is microfounded in the misalignment of preferences between

the two household members. It is decreasing (i.e. is �more hyperbolic�) when household

members have more divergent interests.

I extend the basic model in several ways. First, I generalize the results beyond the case of

log utility functions to allow individual members of the household to have CRRA preferences.

I show that the distortion to the full commitment path and the value of commitment are

increasing in the elasticity of intertemporal substitution. Next, I introduce a public non-

rival consumption good that is shared by both members of the household. I show that it is

only in the consumption of private goods that the commitment problem occurs. As a result

the intertemporal ine¢ ciency and the value of commitment are strictly decreasing in the

importance of these public goods in the household.

One interpretation of this paper is that it provides a microfoundation for hyperbolic sav-

ings and consumption behavior at the household level. However the psychological evidence

for hyperbolic discounting is conducted primarily at the level of the individual (Ainslie 2001).

To accommodate this, I extend the model to allow the individual members of the household
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to have hyperbolic time preferences. Not surprisingly, this exacerbates the ine¢ ciency of

the household consumption path and further increases the value of commitment technologies.

More interestingly, I show that hyperbolic individual preferences amplify the household prob-

lem and that the value of commitment when both problems are combined is larger than its

value when both problems are considered in isolation. As such, the goal of the paper is not

to replace individual hyperbolic preferences as a description of decision making. Rather my

purpose is to show that household decision making also naturally renders optimal intertem-

poral plans time inconsistent and that in combination both channels can produce sizeable

distortions to optimal savings plans and create large demands for commitment technologies.

This paper is closely related to the theoretical literature that incorporates misaligned

preferences within the household (see Lundberg and Pollack 2007; Browning, Chiappori,

and Lechene 2006 for comprehensive surveys of the literature). In these papers, household

decision making is modeled as the outcome of a bargaining process and the focus is directed

to determining what determines the threat points and bargaining weights of each household

member. As a result, allocations are assumed to be Pareto optimal both within any period

and over time. However, it is not obvious that households are able to enforce bargained

outcomes ex-post. This is supported by recent evidence (Mazzocco 2007). The equilibrium I

study in this paper is the one that obtains when no such commitment is possible and I use

this to fully characterize the household�s demand for intertemporal commitment. It is not

my objective to argue that households su¤er the time inconsistency problem without taking

actions to mitigate it. Rather the goal is to show that households have an inherent tendency

to undersave and to provide a framework for assessing the types of strategies that households

may employ to overcome this problem.

The paper proceeds as follows. Section I sets up the base model. Section II characterizes

the equilibrium consumption choices of the household, compares them to the full commitment

solution, and computes the value of commitment for the household. Section III characterizes

the preferences of the household�s representative agent. Section IV generalizes the basic
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model in several ways, by allowing household member to have CRRA preferences, to consume

a shared public consumption good, and to individually have hyperbolic time preferences.

Section V studies an alternate consecutive move version of the model designed to show that

the equilibrium studied in the base model is the only one robust to the assumed timing of

consumption within a period. Section VI concludes.

I Model of Household Consumption

The household has two members indexed by i labeled A and B. Time is discrete and

indexed by t. The household is formed at the beginning of period t = 1. Both household

members live for T years. Each year contains N � 1 periods so that there are NT periods in

total. For the bulk of the analysis it is su¢ cient to think of N = 1 however in Section V I will

consider the limiting case as consumption decisions are made in continuous time by letting

N !1. I assume that the household remains together for their entire lives with certainty.

A Preferences

Each period household member i consumes a single consumption good. Let Ci;t denote

the amount of this good consumed by member i in period t. The utility derived by member

i from their own consumption in period t is

ui;t = lnCi;t: (1)

Note that member i does not directly derive utility from member j�s consumption. Later in

Section IV I extend the model to also allow for a non-rival public consumption good which

is consumed jointly by both household members.

Both household members discount utility from future consumption using exponential dis-

count factor �
1
N 2 (0; 1). The individual discounted utility of household member i in period
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t is

Ui;t =

T�tX
x=0

�
x
N ui;t+x: (2)

Thus Ui;t is the utility of household member i absent any concern for the utility of the other

household member. Note that these are standard time preferences so that when considered

on their own the optimal consumption plan for each household member will be time consis-

tent. Only in Section IV do I extend the model to also allow the individual members of the

household to have time inconsistent preferences.

One of the de�ning characteristics of the household is that its members are altruistic. I

capture this by supposing that member i places weight �i 2 (0; 1) on their own utility and

weight 1 � �i on the utility of the other member. I focus on the case where the altruism

between household members is imperfect by assuming that

� � �A � (1� �B) � 0: (3)

In words, �measures the degree to which member i places more weight on her own discounted

utility Ui;t than member j 6= i places on Ui;t. When� = 0, both members agree on the weights

to place on their own individual utility with the simplest case being �A = �B = 1
2
. The

framework can also be used to study the case where members care more about each other

than themselves (� < 0) however since the evidence on household consumption decisions

suggests this is generally not the case I will not focus on this scenario.

The total discounted utility of member i at t is

Vi;t = �iUi;t + (1� �i)Uj;t: (4)

This is the object each household member will maximize when taking actions at t.
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B Household Budget Constraint

The present value of all combined household wealth at the beginning of t = 1 is W1.

I set aside household labor supply decisions and take W1 as given. The second de�ning

characteristic of the household is that all wealth is combined so that both household members

have full access to the remaining combined wealth in each period. For simplicity I normalize

the price of the consumption goods consumed by both household member to one. Any wealth

not consumed by the household is saved between periods at a gross risk free interest rate of

R
1
N . Household wealth evolves according to the following

Wt+1 = R
1
N (Wt �Xt) (5)

where

Xt = CA;t + CB;t (6)

is total household expenditure in period t. The wealth of the household at t can be interpreted

as the present value of lifetime earnings less the present value of all consumption prior to

period t. In e¤ect, I assume that both household members can borrow and lend against the

combined lifetime income of the household in a frictionless capital market at gross annual

interest rate R. As a result in any period, the household is able to spend at most the total

value of all remaining household wealth Wt.

C Decision Making

Household members cannot commit to a path of consumption. As a result, household

members are unable to enforce mutually agreed levels of consumption, either in the present

or the future. Household members non-cooperatively simultaneously decide how much of the

household wealth Wt to spend on their own private consumption Ci;t � 0 each period. The

dynamic equilibrium path of consumption will be the Nash subgame perfect solution to the
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consumption game between these two members. Let a single �*�denote the non-cooperative

equilibrium quantities C�i;t.

Since both members make consumption decisions simultaneously it is possible that both

members could attempt to spend more than total household wealth. To avoid this problem

I assume that both members are able to consume at most half the total household wealth in

any single period:

Ci;t �
Wt

2
: (7)

This condition can be made arbitrarily weak by making N large. For example, (7) implies

that within a year one member can withdraw up to Wt

�
1� 1

2N

�
. As N ! 1 this implies

that all wealth can be withdrawn in any �nite period of time. By imposing (7) I ensure

CA;t+CB;t � Wt and hence have a well de�ned budget constraint for each household member�s

consumption problem each period. I show in the Appendix that (7) does not bind in any

period t < NT if and only if

j�A � �Bj � �
1
N : (8)

I assume that (8) holds. Note that when N is large �
1
N ! 1 and this constraint places almost

no limit on parameters.

I have chosen to require (7) in order to avoid imposing arbitrary tie breaking rules to

deal with situations where members attempt, in total, to spend more than Wt. Depending

on the rule chosen other possible equilibria may arise in the simultaneous move consumption

game. In Section V I revisit this problem by assuming that household members make consec-

utive consumption decisions. In that setting a simple one person budget constraint in which

members are able to spend up to the full amount of remaining household wealth is imposed.

I show that the equilibrium studied here is arbitrarily close to the unique equilibrium from

that model as N !1 thus demonstrating that this assumption is not crucial for the results

studied below. Note that, in equilibrium, condition (7) will only bind in the �nal period of

the household�s life and will ensure that in that period Ci;NT = WNT

2
.
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D Full Commitment Problem and the Value of Commitment

To evaluate the optimality of the non-cooperative equilibrium consumption path, I com-

pare it to the consumption path that would be achieved if the household was able to fully

commit to consumption choices at the start of t = 1. Consider the problem the household

would face in setting a full commitment path. Whenever � 6= 1
2
household members will

disagree over the optimal allocation. However any allocation that they would choose must be

Pareto optimal and hence I characterize the solution to the following full commitment Pareto

problem:

max
ffCi;tgt=NTt=1 gi2fA;Bg

� = �VA;1 + (1� �)VB;1 (9)

subject to W1 �
NTX
x=1

R�
x�1
N [CA;x + CB;x] � 0 and (10)

fCA;t; CB;tgt=NTt=1 � 0. (11)

where � 2 [0; 1] is the pareto weight placed on the objective of member A. Let a double

�**�denote the full commitment pareto optimal consumption quantities C��i;t that solve this

problem.

To quantify the welfare loss incurred by the household under the non-cooperative equilib-

rium I calculate how much the household would be willing to pay at t = 1 for a technology

that allowed them to commit to an optimal consumption path. Let V �i;1 (W1) be the dis-

counted lifetime utility that will be achieved by household member i absent commitment as

a function of initial household wealth. Let V ��i;1 (W1 (1� �) ; �) be the counterpart for the

case where the household has spent a fraction � of their initial wealth W1 to achieve the

full commitment plan that places weight � on the preferences of member A. The value of

commitment ��� is de�ned as the most that the household will pay while ensuring that there

exists a weight � so that the purchase is a pareto improvement for both members. Formally
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��� solves:

��� = max
�;�

� (12)

subject to V ��i;1 (W1 (1� �) ; �) � V �i;1 (W1) for i 2 fA;Bg , and � 2 [0; 1] :

An analytical solution for ��� is intractable in most cases so this will be solved for numerically.

II Consumption Choices and the Value of

Commitment

A Non-Cooperative Equilibrium Consumption Choices

The equilibrium consumption path is solved in the Appendix. The equilibrium level of

consumption by member i in period t < NT is

C�i;t =
�i

1 + �+
PNT�t

x=1 �
x
N

Wt: (13)

By assumption the equilibrium consumption in period t = NT is C�i;t =
Wt

2
. This is the

unique interior equilibrium.1 The allocation of consumption within any period is determined

the weights each member place on their own utility

C�i;t
C�j;t

=
�i
�j
:

If member A places more weight on his own utility than B places on hers then A will have

a larger share of consumption in each period. Total equilibrium household expenditure in

1There is another set of trivial equilibria in which both members set C�i;t = 0. This is optimal only
becasue of the log utiltiy assumption. If instead I assume the period utility function to be ui;t = ln (Ci;t + ")
for any arbitrarily small " > 0 this equilibrium would not exist. No equivalent of this equilibria exists in the
consecutive move version of the model in Section V. Hence I ignore this for the rest of the paper.
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period t is

X�
t =

1

1 + 1
1+�

PNT�t
x=1 �

x
N

Wt: (14)

The share of wealth that is spent in any period t < NT is strictly increasing in �, the degree

to which household members weigh their own individual utility more than their partner�s.

The dynamics of equilibrium consumption between periods is

X�
t+1

X�
t

= (R�)
1
N

 PNT�(t+1)
x=0 �

x
N

�+
PNT�(t+1)

x=0 �
x
N

!
: (15)

The higher is � the more downward sloping is the equilibrium consumption path. The

dynamics of household consumption is determined only by � and not the particular values

of �A and �B that give rise to that degree of misalignment. So two households in which both

household members are care slightly more for themselves with �A = �B = 0:6 will have an

identical path of total consumption as one in which one member cares more for himself and

the other cares equally for both with �A = 0:7 and �B = 0:5. The only di¤erence in these

household will be the consumption share of each member within a period but the total level

of consumption will be identical.

B Comparison to Full Commitment Consumption Path

To assess the optimality of the equilibrium consumption path that the household will

achieve without commitment, I compare it to the set of Pareto optimal consumption paths,

one of which would be chosen if the household had access to perfect commitment at t = 1.

The total level of consumption that the household would commit to in any period is

X��
t =

1

1 +
PNT�t

x=1 �
x
N

Wt: (16)

The optimal total level of consumption is not a¤ected by the Pareto weight � given to each

member in the planning problem. Comparing the full commitment solution to the equilibrium
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level of consumption leads directly to the following proposition:

Proposition 1: If � > 0 then in any period t < NT the non-cooperative equilibrium level

of consumption is higher than the amount that the household would commit to conditional on

entering the period with wealth Wt.

The proof of Proposition 1 comes directly by comparing (14) with (16). The intuition

for this result is as follows. When making their consumption choices each household member

trades o¤ the bene�t of a dollar spent on consumption for themselves versus a the bene�t of

saving a dollar for the combined household. Both household members place weight �i on the

utility from their own consumption relative to a combined weight of unity for the discounted

value of household savings. Thus, in total, the household acts as though it places weight

1+� on it�s current self relative to the combined future interest of the household. The social

planner, for any pareto weight � always places the same weight on the discounted utility of

the household in each period. Put di¤erently, the full commitment solution is not subgame

perfect because at least one household member will wish to unilaterally deviate from this

allocation by spending slightly more on themselves. There is no distortion to savings only

when member i cares about her own utility as much as j does (� = 0). In this case both

members have the same objective and the non-cooperative growth rate of consumption is

identical to the full commitment equilibrium.

The dynamics of consumption under the full commitment consumption path are given by:

X��
t+1

X��
t

= R�: (17)

Thus a direct corollary of Proposition 1 is that the slope of the consumption path in the

non-cooperative equilibrium is strictly below the slope of the full commitment consumption

path whenever � > 0. This is seen immediately by comparing (15) and (17).

The equilibrium consumption path is compared to the full commitment solution in Figure

1 assuming T = 50, � = 0:95, R = 1
0:95
, and N = 1. The �gure illustrates that early in

12



the life of the household the equilibrium level of consumption is higher than under the full

commitment solution. When both members place 60% weight on their own utility (�A = �B =

0:6) in total the household spends over 18% more than it would under the full commitment

solution in the �rst year. If this altruism is reduced so that �A = �B = 0:7 then the household

overspends by more than 37% in the �rst year of it�s life. The under-provision of savings means

that later in the households life they consume much less than under the full commitment

optimum. If �A = �B = 0:6 then the household consumption is less than 60% of the level

that the household would like to commit to for each of the last �ve years of the households

life.

In the full commitment solution, only the allocation of consumption within each period is

determined by the pareto weight assigned to each household member in the planning problem.

For a given pareto weight � the ratio of each members consumption in any period t < NT is

C��A;t
C��B;t

=
��A + (1� �) (1� �B)
(1� �) �B + � (1� �A)

:

From this expression we see that if member i was given full control to chose the consumption

path of both members then the ratio of her consumption to her partner�s would be �i
1��i in

each period.

C The Value of Commitment

Having shown that the allocation of consumption achieved in the non-cooperative solution

is ine¢ cient I now turn to quantifying this ine¢ ciency. To do this I ask what fraction ���

of the household�s initial wealth would both household members agree to spend in order to

achieve a pareto e¢ cient allocation. Due to the assumption of log utility this fraction will

be independent of the level of initial household wealth. Despite this, an analytical solution

for ��� is in most cases intractable. Instead I solve for this fraction numerically in Figure 2.

Panel A shows that the value of commitment increases monotonically with the weight that
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household members place on their own utility relative to the utility of the other. A household

in which both members place weight �i = 0:6 on their own utility will be prepared to pay

up to 1.61% of the present value of their total wealth to achieve full commitment. If both

members place weight �i = 0:7 on their own utility the undersaving problem is more severe

and they would be willing to pay up to 5.62% of total household wealth to eliminate this

ine¢ ciency.

Panel B shows that the value of commitment varies non-monotonically with the discount

rate of the household members. This stems from the fact that there are two countervailing

forces. First, when � is larger, both household members care more about the future and

hence are willing to pay more to avoid the e¤ect that undersaving will have on their future

consumption levels. Conversely, increasing � raises both household members individual desire

to save and thus mitigates the problem. Panel B shows that this �rst force dominates for

most values of � and is only reversed by the second force when � is very close to unity.2

Panel C considers the e¤ect of changing the pattern of self interest within the household

holding � constant at 0.2. When �A = 0:6 then both household members are equally self

interested since �B = 0:6. Conversely when �A = 0:7 then �B = 0:5 implying that A cares

more about his own utility than B�s but that B cares equally for both. Recall that (14) and

(15) show that the dynamic path of consumption for the household is identical under both

scenarios, it is just the allocation of that consumption within each period that is di¤erent.

The results in Panel C indicate that the value of commitment is increasing with the degree

of asymmetry of self interest in the household. However, noting the y-axis, the magnitude of

this e¤ect is second order when compared to changes in � as shown in Panel A.

2Qualitatively, the same non-monotonic relationship obtains for all other reasonable paramter choices.
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III Representative Agent

Typically household savings and consumption decisions are modeled as if they are made by

a single optimizing representative agent. If the interests of household members are perfectly

aligned (� = 0) then this assumption involves no loss of generality since both members have

the same objective function. In this case the representative agent will have the same time

preferences as the individual household members. In this section I �nd the representative

agent for a household in which the interests of its members are not perfectly aligned. Of

particular interest, I ask whether it is possible to �nd a representative agent that would

achieve the same consumption path and what time preferences would this agent have. We

know already that the time preferences of the representative agent must be di¤erent to that

of its individual members since those preferences are time consistent and would give rise a

consumption path identical to the full commitment solution.

Since the primary focus of this paper is the intertemporal choices of the household I

consider a representative agent with preferences over the level of total household consumption

Xt. Matching the allocation of consumption within each period between CA;t and CB;t is not

interesting because in equilibrium these are consumed in a constant ratio.3 Consider the

problem of a single representative agent who chooses the level of Xt, each period. The period

utility of the representative agent is

ur;t = lnXt: (18)

The discounted utility of the representative agent at time t is

Ur;t = ur;t + 
r

NT�tX
x=1

�
x
N
r ur;t+x (19)

where �r 2 (0; 1] is a standard exponential discount factor and 
r 2 (0; 1] is a quasi hyperbolic
3This can be achieved by using a more general period utility function over CA;t and CB;t of the form

ur;t = �A;r lnCA;t +
�
1� �A;r

�
lnCB;t does not alter the time preferences found in Proposition 2.
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discount factor of the type introduced by Laibson (1997). While more general utility functions

and discount functions could be considered the results below show that this form is su¢ ciently

�exible to represent the household. The representative agent faces the same intertemporal

budget constraint as the household (5).

As stressed by Laibson (1997), when 
r < 1 any optimal path of consumption from the

perspective of the representative agent at t will be time inconsistent. When considering the

representative agent without commitment, I study the problem where the agent is aware of

this time inconsistency and takes it into account when making consumption choices each

period. As a result the consumption path chosen by the representative agent will be found

by backward induction where consumption choices are subgame perfect best responses given

the resulting choices that they will lead to in the future. The consumption path of the

representative agent with and without commitment is solved in the Appendix.

Proposition 2: The representative agent without commitment has an identical path of total

consumption as the household without commitment if:

i: �r = �; and

ii: 
r =
1

1 + �
:

Whenever NT > 2 and is �nite this is the unique set of time preferences that replicate he

consumption path of the household.

Proposition 2 is proved in the Appendix. The key result in Proposition 2 is that � > 0

implies 
r < 1. Thus, when household members care more about their own utility than

their partner does, the representative agent for the household must have hyperbolic time

preferences. This microfoundation for the hyperbolic discount factor of the representative

agent captures the central intuition for the household undersavings result documented in

Proposition 1. At any point in time, when a household member decides how much to spend
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on private consumption he places weight �i on the utility from this consumption relative to

unity for the combined marginal utility of an additional dollar of savings. Since in equilibrium

both members are making the same trade-o¤, in total they act as though they are currently

worth 1+� relative to unity for their combined marginal utility from future savings. In total,

despite the fact both members of the household have standard exponential time preferences,

the household acts as if it always discounts the entire future with hyperbolic discount factor


r =
1

1+�
< 1. Note that if both household members care about their own utility as much

as their partner does (� = 0) then only in this case does the representative agent also have

standard exponential time preferences (
r = 1). Thus, even if we believe that individuals

have time consistent exponential preferences, modelling households savings and consumption

decisions as if the household has standard time consistent preferences is valid only if we

assume that household members have perfectly aligned objectives.

IV Generalizing Household Preferences

This section studies several extensions to the preferences assumed for household members

in the model studied so far. First, I allow household members to have CRRA period utility

functions to study how the results vary with the elasticity of intertemporal substitution of

the household members. Next, I study how the presence of public consumption goods within

the household impacts equilibrium savings. Finally, I allow the individual members of the

household to have time inconsistent hyperbolic time preferences of the type emphasized by

Laibson (1997). The goal is to show how these extensions a¤ect household savings decisions

and the value of commitment. I will consider each extension one at a time and in isolation

so as to highlight the di¤erences from the base model results presented above.
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A CRRA Utility

The model presented so far, by assuming log period utility, has implicitly concentrated on

the case where the elasticity of intertemporal substitution (EIS) for both household members

is unity. The literature which has sought to estimate the EIS has produced mixed results.

Estimates range between being close to zero (Hall 1988, Dynan 1993) to being as high as

two (Blundell, Browning and Meghir 1994; Mulligan 2002; and Gruber 2006). I study how

the household saving problem changes with di¤erent values of the EIS by replacing the log

period utility function in (1) with a CRRA utility function of

ui;t =
C
1� 1

�

i;t � 1
�

1� 1
�

: (20)

Here � is the EIS of each household member. The log utility case studied so far is a special

case of this utility function where � = 1. The rest of the framework remains the same as

before.4

An analytical solution to the non-cooperative equilibrium is fully characterized in the

Appendix. In this generalized setting the solutions for equilibrium consumption choices are

generally intractable. To avoid this I focus on numerical examples illustrating the resulting

equilibrium household consumption path. These are presented in Figure 3. Panel A shows

how the equilibrium consumption path of the household varies with the EIS and compares it

to the full commitment consumption path. In each case I assume that both members place

weight �i = 0:6 on their own utility. Note �rst that since these are drawn for � = 1
R
, the

full commitment consumption path is �at and identical for each value of �. The panel shows

that degree of undersavings is increasing in the EIS. For these parameters, when � = 0:5,

the household spends over 8% more than the full commitment level of consumption in the

�rst year of its life. If instead, � = 1:5 then household consumption is more than 30% higher

4I generalize assumption (8) and assume
���(�A) 1� � (�B) 1� ��� � �� 1

NR
1��
N 2��1

� 1
�

. As demonstrated in the

appendix this is necessary and su¢ cient to ensure (7) does not bind for any t < NT .
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than optimal level. Of course when the EIS is higher the utility cost from an intertemporal

ine¢ ciency of a �xed size is also lower. So as we increase the EIS the size of intertemporal

ine¢ ciency increases but the utility cost of a given distortion falls.

Panel B shows which of these countervailing forces dominates by showing how the value

of commitment varies with the EIS. As in Panel A, this is drawn assuming �i = 0:6 for both

household members. The clear comparative static result from Panel B is that the value of

commitment increases with the EIS. Despite the fact that the utility cost of a given distortion

is lower, the increased size of the intertemporal ine¢ ciency dominates this e¤ect. For the

parameters assumed in Figure 3, the household will be willing to pay 0.77% of household

wealth to achieve full commitment if � = 0:5. If instead � = 1:5 the household will be willing

to pay 2.54% of household wealth to achieve full commitment.

A-1 Representative Agent with CRRA Utility

I now show that under certain conditions the representative agent results of Section III

can be generalized to the case where individual household members have CRRA utility. To

do this consider the same representative agent as before except now replace the log period

utility function in (18) with

ur;t =
X
1� 1

�

t � 1
�

1� 1
�

: (21)

Proposition 3: Assume the household is symmetric so that �A = �B. Assume also that

household members and the representative agent have CRRA utility as per (20) and (21).

The representative agent without commitment has an identical path of total consumption as

the household without commitment if:

i: �r = �; and

ii: 
r =
1

1 + �
:
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Whenever NT > 2 and is �nite and � > 0, then the consumption path of the household

cannot be replicated by a representative agent with any constant discount factor �r and 
r =

1.

Thus the logic of the representative agent from the log case carries over to the more

general CRRA case in the case where the household is perfectly symmetric. Outside of the

symmetric case it is not possible to �nd two constant for �r and 
r that will replicate the

consumption path of the household.

B Public Consumption Good

B-1 Setup with Public Consumption

So far I have assumed that all consumption goods are consumed individually by one

member or the other. As such, CA;t only contributes utility to household member B in so far

as B cares about the utility of A. However one advantage of being in a household is that it

allows the household members to share non-rival public consumption goods such as housing,

children, and consumer durables. To study how this impacts the intertemporal consumption

that the household will achieve suppose that there is a second good, Ht; that provides utility

directly to both household members. The total level of public consumption is the sum of the

amount purchased in each period by both household members

Ht = HA;t +HB;t

where Hi;t is the amount of the public consumption good purchased by member i in period

t. Assume now that the period utility of member i is

ui;t = � lnCi;t + (1� �) lnHt
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where � 2 [0; 1] captures the relative weight that household members place on private con-

sumption relative to public consumption.5 This period utility function replaces the simple

period utility function in (1) which is just a special case were � = 1. Apart from this change

the preferences of the household members remain the same as described for the base model

in (2), (3), and (4).

I assume that public consumption is also continuous and decided non-cooperatively. Each

period both members simultaneously chose how much of the remaining household wealth to

spend on Ci;t � 0 and Hi;t � 0. As before, consumption choices are chosen non-cooperatively

as Nash equilibrium subgame perfect best responses to each other. To avoid the possibility

that household members spend more than total household wealth I adapt (7) to assume that

Ci;t +Hi;t �
Wt

2
: (22)

To ensure this condition never binds outside of t = NT I adapt (8) to now assume

j�A � �Bj �
1� �+ � 1

N

�
(23)

which, since � < 1, is less restricitve than (8). Total expenditure in period t is now

Xt = CA;t + CB;t +HA;t +HB;t: (24)

The intertemporal budget constraint (5) remains the same as before. The benchmark full

commitment planning problem is amended in the same way to incorporate the public con-

sumption good.

5The model can be extended to allow each member to place di¤erent weights on public versus private
cosnumption. If we assume that members are unable to reverse the consumption decision of the other
(Hi;t � 0) then the level of public consumption will be determined by the level desired by the member with
the highest weight on public consumption (lowest value of �i).
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B-2 Non-Cooperative Equilibrium Consumption Choices with Public Consump-

tion

The model with public household consumption is solved in the Appendix. The primary

focus is to study how the presence of this shared consumption goods a¤ects the intertemporal

decisions of the household. The equilibrium level of consumption by member i in period t < T

is

C�i;t =
�i�

1 + ��+
PNT�t

x=1 �
x
N

Wt: (25)

Since it doesn�t matter who buys a given unit of the public consumption good the in-

dividual choices of HA;t and HB;t are not uniquely determined in equilibrium. However the

total level of public consumption is uniquely determined in equilibrium and is

H�
t =

1� �
1 + ��+

PNT�t
x=1 �

x
N

Wt: (26)

Total equilibrium consumption in each period is

X�
t =

1

1 + 1
1+��

PNT�t
x=1 �

x
N

Wt:

The full commitment optimal level of total consumption is the same as before as described

in (16).

Proposition 4: In the model with public consumption, if �� > 0 then in any period t <

NT the non-cooperative equilibrium level of consumption is higher than the amount that the

household would commit to conditional on entering the period with wealth Wt.

This highlights the importance of private consumption in the intertemporal distortion to

household savings. This is the decision which is distorted because it requires each member to

trade o¤ between their own utility and the combined interests of the household. Since both

household members value themselves more than the other this creates a distortion whereby
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each member doesn�t fully internalize the bene�t of savings relative to the utility gain from

private consumption. When deciding on the level of public consumption each member trades

o¤ the combined interest of the household today versus the future combined interest. This

trade-o¤ is not distorted by the self interest of the individual household members. In the

extreme, if all consumption were public (� = 0) then both members would have the same

objective and would choose an intertemporally e¢ cient consumption path even if they cared

very little for their partner (i.e. if� was large). This intuition is captured in the intertemporal

preferences of the representative agent for household with public consumption.

Proposition 5: In the model with public consumption, the representative agent without com-

mitment has an identical path of total consumption as the household without commitment

if:

i: �r = �; and

ii: 
r =
1

1 + ��
:

Whenever NT > 2 and is �nite and �� > 0, then the consumption path of the household

cannot be replicated by a representative agent with any constant discount factor �r and 
r =

1.

Thus the representative agent for the household remains a single agent with a hyperbolic

discount factor. The size of the hyperbolic discount factor is now microfounded in the degree

to which household members disagree over the relative weight they assign to each others

private consumption. The larger the fraction of household consumption that is private, the

smaller will be 
r and hence the further will the household be from the time consistent con-

sumption path it would like to commit to. This intuition is captured in Figure 4 which plots

the value of commitment as a function of �. The value of commitment is strictly increasing

in the weight that both household members place on private versus public consumption. This
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demonstrates that the savings problem is less severe in a household where members draw a

larger fraction of their utility directly from the same things. This suggests that increases in

the importance of shared consumption, say through having children, may also reduce the sav-

ings distortion. In addition, it implies that one reason why household are more likely to form

amongst people with more shared interests is that this helps alleviate the over consumption

problem.

C Hyperbolic Household Members

The central message of the paper is that even if a household is comprised of members

who individually have time consistent preferences that the household overall will typically

be unable to carry out optimal consumption plans. To emphasize this point I have studied

a model in which individuals have standard exponential time preferences and hence, left to

themselves, optimal consumption plans will be time consistent. However, most of psycholog-

ical evidence for hyperbolic time preferences is done at the level of the individual (Ainslie

1992). I now study how time inconsistency in the individual time preferences interacts with

the time inconsistency exhibited by the combined household.

To do this I re-examine the base model introduced in section I. The only change to that

setup is to the time preferences of both household members so that (2) is replaced with

Ui;t = ui;t +	
NT�tX
x=1

�
x
N ui;t+x (27)

where 	 � 1 is the hyperbolic discount factor used by both household members to discount

future utility relative to the present.6

The equilibrium of the model is solved in the Appendix along with the full commitment

6I also amend the assumption in (8) with j�A � �B j � 	�
1
N to ensure (7) does not bind in any period

t < NT .
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optimal allocation. The equilibrium level of consumption by member i in period t < NT is

C�i;t =
�i

1 + �+	
PNT�t

x=1 �
x
N

Wt (28)

and total consumption

X�
t =

1

1 + 	
1+�

PNT�t
x=1 �

x
N

Wt: (29)

For a given level of wealthWt the household will consume more in a period if the members

are more hyperbolic (	 lower) and have more misaligned preferences (� larger). For all

periods after t = 1 the optimal level of household consumption is still given by (16). Direct

comparison shows that the household consumes more than the full commitment fraction of

wealth in every period t > 1 whenever 	
1+�

> 1. This is the analog to Proposition 1 but

the commitment problem is now exacerbated by the inconsistent time preferences of the

household members.

By comparing (29) to the case where 	 = 1 it is clear that the representative agent result

of Section III can be extended directly to the case where household members have hyperbolic

time preferences.

Proposition 6: In the model where household members discount future utility with a hyper-

bolic discount factor 	 � 1, the representative agent without commitment has an identical

path of total consumption as the household without commitment if:

i: �r = �; and

ii: 
r =
	

1 +�
:

Whenever NT > 2 and is �nite and 	
1+�

> 0, then the consumption path of the household

cannot be replicated by a representative agent with any constant discount factor �r and 
r =

1.
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This proposition makes clear that the time inconsistency of the households overall con-

sumption path is ampli�ed when the individual members are themselves hyperbolic. This

point is made clearer by considering how the value of commitment is e¤ected when the indi-

vidual members of the household are hyperbolic. This is shown in Figure 5 which plots the

value of commitment considers a household in which both members place symmetric weight

on their own utility versus their partners (i.e. � = �A = �B). The relationship between the

value of commitment and � is shown for for 	 = 0:85 and 	 = 1. When household members

place the same weight on each other�s utility (�A = �B = 0:5) the value of commitment with

	 = 0:85 is 1.19% of household wealth. This is the force that Laibson (1997) documents

showing that hyperbolic individuals will value commitment to resolve the time inconsistency

in their optimal consumption plans. Conversely, when �A = �B = 0:65 and 	 = 1 the house-

hold is willing to spend 3.38% of its lifetime wealth to achieve full commitment and overcome

the ine¢ ciency due purely to the divergence in both member�s objectives. A household which

combines both forces, so that �A = �B = 0:65 and 	 = 0:85 will pay 8.67% of household

wealth for commitment. This is 4.10 percentage points higher than the sum of the value

of commitment (1.19% + 3.38%) from considering both of these forces in isolation. Hav-

ing hyperbolic individuals ampli�es the household�s problem because it further distorts each

member�s value of the future combined wealth of the household which they trade o¤ against

the current value of their own private utility. Thus, even if the degree of time inconsistency

introduced by either of these forces is mild on its own there may be sizable welfare costs once

these problems are considered in combination.

V Consecutive Consumption Choices

The model studied above has highlighted the way that non-cooperative consumption de-

cisions by household members who care more about their own utility than their partner does

will lead to over consumption relative to the optimal full commitment solution. This has been
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shown in a standard model of intertemporal consumption and savings with the only innovation

being that the household has two members with imperfectly aligned altruistic preferences and

that they share the same pool of wealth. Because I assumed that both household members

decided consumption simultaneously this creates the theoretical possibility that household

members could attempt to spend more than the total amount of all household wealth. To

avoid specifying arbitrary tie breaking rules to deal with such a scenario I assumed in (7)

that each member is able to spend no more than half of the household�s wealth in any period.

Since the number of periods per year N is potentially very large this is not a very restrictive

assumption. However it is still arti�cial and thus it is important to demonstrate the results

are robust to alternate ways of dealing with this problem.

The focus of this section is consider the same model but to remove this restriction and

instead assume that household members make consumption decisions consecutively within

any period. By assuming consecutive moves the model can revert to a standard budget con-

straint whereby each member can spend up to the full amount of remaining household wealth

each time they consume. The purpose of this section is to study this alternate assumption

and establish that when N is large the simultaneous move equilibrium studied above is the

limiting case of the unique equilibria reached in the consecutive move setup.

A Consecutive Move Setup

Assume that the preferences of the household members is unchanged from the setup in

Section I. The timing of decisions and the budget constraint facing each member is now

as follows. The household starts the period with wealth of Wt. Without loss of generality,

assume that member A is able to decide her own level of consumption �rst subject to

CA;t � Wt: (30)
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Thus A is free to spend up to all of the household�s remaining wealth. After this decision is

made, the interim level of household wealth is

fWt = Wt � CA;t: (31)

Member B learns how much wealth the household has remaining and chooses her own con-

sumption level subject to

CB;t � fWt: (32)

Thus B is able to spend up to the full amount of remaining household wealth. From one

period to the next wealth evolves in the same way as before as speci�ed in (5). As before

consumption choices are chosen non-cooperatively and are found as subgame perfect best

responses at each point in time.

B Non-Cooperative Equilibrium Consumption Choices

The consecutive move version of the model is solved in the Appendix. The unique equi-

librium consumption choice of member�s A and B as a function of Wt are

C�ConA;t =
�A

1 +
PNT�t

x=1 �
x
N

Wt and (33)

C�ConB;t =

 
�B

�B +
PNT�t

x=1 �
x
N

! 
1 +

PNT�t
x=1 �

x
N � �A

1 +
PNT�t

x=1 �
x
N

!
Wt:

The unique equilibrium level of total consumption in any period is

X�Con
t =

 
1

1 +
PNT�t

x=1 �
x
N

! 
(1 + �)

PNT�t
x=1 �

x
N + �B

�B +
PNT�t

x=1 �
x
N

!
Wt: (34)

The equilibrium consumption choices are slightly complicated because of the stackelberg

leader and follower dynamics within each period. This encourages A to consume slightly

more to strategically lower the amount of consumption from B. Apart from this within
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period strategic consumption motive the forces governing both consumption decisions are

identical to before. As the length of each period becomes arbitrarily small (i.e. N gets large)

then the magnitude of these within period strategic incentives will diminish as well. This is

established formally in the following Proposition which is proved in the Appendix.

Proposition 7: As N ! 1 the equilibrium consumption choices of the consecutive move

game become arbitrarily close to the simultaneous move equilibrium as de�ned in (13) and

(14). Formally,

lim
N!1

C�Coni;t

C�i;t
= 1 and lim

N!1

X�Con
t

X�
t

= 1:

Proposition 7 establishes that the equilibrium studied in the simultaneous move model is

not a by-product of the arbitrary expenditure limits assumed in (7). Moreover, any additional

equilibria that might have arisen in that model were a di¤erent assumption made to deal with

potential overdrawing would not be robust to minor variations in the timing of consumption

decisions.

VI Conclusion

This paper introduces a model of household consumption and savings in which household

members have imperfectly aligned altruistic preferences. I show that the household is unable

to achieve the optimal consumption path without commitment. I have not addressed the

speci�c strategies that the household will employ to mitigate this problem. Some strategies

such as investing in illiquid assets have already been studied in the context of individuals

with hyperbolic preferences (Laibson 1997). Strategies speci�c to the household problem

studied here will also be e¤ective. For example, punishment strategies between the houshe-

old members or separate bank accounts for each member may improve the e¢ ciency of the

consumption path if they are credible. In addition, restrictions on borrowing that require

the consent of both partners, as is common with 401K loans (Choi Laibson Madrian Metrick
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2004), can also alleviate the problem. A detailed consideration of these strategies using the

framework provided here is left for future work.
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VII Appendix

A Non-Cooperative Equilibrium Household Consumption with Log Utility

This section of the Appendix solves for subgame perfect equilibrium non-cooperative
household consumption decisions. I solve a generalized model in which both members have
a period utility function that places weight � on the utility from private consumption and
1 � � on the utility from public consumption Ht as introduced in Section IV. I also allow
individual members to have a hyperbolic discount factor 	 (as introduced in Section IV).
The results for the rest of the paper will be special cases of the results I �nd here where � = 1
and/or 	 = 1.

A-1 Equilibrium at t = NT

In the �nal period t = NT member i takes Cj;NT and Hj;NT as given and solves the
following problem:

max
Ci;NT ;Hi;NT

�i [� lnCi;NT + (1� �) ln (Hi;NT +Hj;NT )] (35)

+(1� �i) [� lnCj;NT + (1� �) ln (Hi;NT +Hj;NT )]
subject to
WNT

2
� Ci;NT �Hi;NT � 0 and (36)

Ci;NT ; Hi;NT � 0. (37)

32



Since (35) is strictly increasing in Ci;NT and Hi;NT it follows that (36) will bind with equality
and hence can be substituted into the objective. Ignoring terms which i takes as given we
can rewrite her problem as

max
Hi;T

�i� ln

�
WNT

2
�Hi;NT

�
+ (1� �) ln (Hi;NT +Hj;NT ) (38)

subject to
WNT

2
�Hi;NT � 0 and (39)

Hi;NT � 0: (40)

Start by ignoring the boundary conditions (39) and (40) on Hi;NT . The �rst order condition
for the unconstrained problem rearranges to give:

Hi;NT =
(1� �) WNT

2
� �i�Hj;NT

1� � (1� �i)
: (41)

Since the objective is strictly concave in Hi;NT , using the boundary conditions (39) and (40)
on Hi;NT gives that �{�s unique best response to any possible choice of Hj;NT � 0 is

HBR
i;NT (Hj;NT ) =

(
bi;NT

WNT

2
�mi;NTHj;NT if Hj;NT � 1��

�i�
WNT

2

0 if Hj;NT >
1��
�i�

WNT

2

)
(42)

where bi;NT � 1� �
1� � (1� �i)

> 0; and

mi;NT � �i�

1� � (1� �i)
2 (0; 1) :

Note that HBR
i;NT (Hj;NT ) is weakly decreasing and hence the most that i will spend on public

consumption is

HBR
i;NT (0) =

1� �
1� � (1� �i)

WNT

2

which is strictly less than the upper bound WNT

2
since �i > 0. Thus ((39)) can be ignored.

Note that HBR
i;T (0) > 0 and hence HA;T = HB;T = 0 cannot be a Nash equilibrium. If

bi;NT � bj;NT
mj;NT

then H�
i;NT = bi;NT

WNT

2
and H�

j;NT = 0 is a Nash equilibrium. In this case
equilibrium, private consumption will be

C�i;NT = (1� bi;NT )
WNT

2
and C�j;NT =

WNT

2
:

Since mi;T ;mi;T < 1 then this equilibrium is unique. A symmetric argument, applies when

bi;NT � mi;NT bj;NT . Finally, if bi;NT 2
�
mi;NT bj;NT ;

bj;NT
mj;NT

�
then there is an interior nash

equilibrium. This is found by substituting the interior portion of j�s reaction function into
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the reaction function of i:

H�
i;NT =

bi;NT �mi;NT bj;NT
1�mi;NTmj;NT

WNT

2
:

To total expenditure on public consumption in this interior solution is

H�
NT =

�
bi;NT (1�mj;NT ) + bj;NT (1�mi;NT )

1�mi;NTmj;NT

�
WNT

2
:

The equilibrium level of private consumption in this interior solution is

C�i;T =

�
1� bi;NT �mi;NT bj;NT

1�mi;NTmj;NT

�
WT

2
:

Thus the equilibrium value of member i�s objective function is

Vi;NT = lnWNT + ki;NT

where ki;NT is a constant term that depends on parameters in the following way

ki;NT �

8>>>>>>>>>>>><>>>>>>>>>>>>:

�
�i� ln (1� bi;NT )

+(1� �) ln (bi;NT )� ln 2
if bi;NT � mi;NT bj;NT266664

�i� ln
�
1� bi;NT�mi;NT bj;NT

1�mi;NTmj;NT

�
+(1� �i)� ln

�
1� bj;NT�mj;NT bi;NT

1�mi;NTmj;NT

�
+(1� �) ln

�
bi;NT (1�mj;NT )+bj;NT (1�mi;NT )

1�mi;NTmj;NT

�
� ln 2

if bi;NT 2
�
mi;NT bj;NT ;

bj;NT
mj;NT

�
�
(1� �i)� ln (1� bj;T )
+(1� �) ln (bj;T )� ln 2

if bi;NT � bj;NT
mj;NT

37777777777775
:

A-2 Solve for Subgame Perfect Consumption Path by Induction

I conjecture the following form for the subgame perfect household allocation.

Conjecture 1 The subgame perfect equilibrium housheold allocation from t until NT is pro-
portional to Wt. That is, for any period t 2 f1; :::; NTg the subgame perfect equilibrium levels
of private and public consumption can be written as C�i;t+x = gi;t+xWt and H�

t+x = hi;t+xWt

for x 2 f0; 1; :::; NT � tg where gi;t+x and hi;t+x are strictly positive constants independent of
Wt.

I will establish this conjecture by induction below. Consider the problem that each house-
hold member faces in period t < NT . Member i takes Cj;t and Hj;t as given and solves the
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following:

max
Ci;t;Hi;t

�i� lnCi;t + (1� �) ln (Hi;t +Hj;t) + (1� �i)� lnCj;t (43)

+	
NT�tX
x=1

�
x
N

�
�i� lnC

�
i;t+x + (1� �i)� lnC�j;t+x + (1� �) ln

�
H�
t+x

��
subject to

Wt+1 = R
1
N (Wt � Ci;t � Cj;t �Hi;t �Hj;t) , (44)

Wt

2
� Ci;t �Hi;t � 0, (45)

Ci;t � 0, and (46)

Hi;t � 0. (47)

Conjecture 1 implies that

	
NT�tX
x=1

�
x
N

�
�i� lnC

�
i;t+x + (1� �i)� lnC�j;t+x + (1� �) ln

�
H�
t+x

��
= Yt+1 lnWt+1 + ki;t

where Yt+1 � 	
NT�tX
x=1

�
x
N

and ki;t is a constant. In equilibrium the budget constraint will bind. Log utility will ensure
C�i;t > 0 in equilibrium and hence (46) can be ignored for now and veri�ed later. Ignoring
terms that �{ takes as given in t and substituting (44) into the objective, i�s problem can be
rewritten as

max
Ci;t;Hi;t

�i� lnCi;t + (1� �) ln (Hi;t +Hj;t) (48)

+Yt+1 ln (Wt � Ci;t � Cj;t �Hi;t �Hj;t)
subject to
Wt

2
� Ci;t �Hi;t � 0 and (49)

Hi;t � 0. (50)

Start by ignoring (49) and (50). The �rst order conditions for the unconstrained problem are

Ci;t :
�i�

Ci;t
� Yt+1
Wt � Ci;t � Cj;t �Hi;t �Hj;t

= 0 (51)

Hi;t :
1� �

Hi;t +Hj;t
� Yt+1
Wt � Ci;t � Cj;t �Hi;t �Hj;t

= 0 (52)

The �rst order condition for Hi;t implies that

Ht = Hi;t +Hj;t =
1� �

1� �+ Yt+1
[Wt � Ci;t � Cj;t] : (53)
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Hence for any given level of Wt, Ci;t, and Cj;t both members agree on the optimal level of Ht.
Since it is funded jointly they are indi¤erent as to who pays for it. Equation (51) implies

Ci;t = gi;t [Wt � Cj;t �Ht] : (54)

where gi;t �
�i�

Yt+1 + �i�
2 (0; 1) :

Substituting j�s analog of (54) into ((54)) gives

Ci;t =
gi;t (1� gj;t)
1� gi;tgj;t

[Wt �Ht] : (55)

Combining (53) and (55) gives the equilibrium level of public consumption

H�
t =

 
1� �

1 + ��+	
PNT�t

x=1 �
x
N

!
Wt: (56)

Combining (55) and (56) gives the equilibrium level of private consumption for each member

C�i;t =

 
�i�

1 + ��+	
PNT�t

x=1 �
x
N

!
Wt: (57)

Equilibrium total expenditure is thus

X�
t = H

�
t + C

�
A;t + C

�
B;t =

 
1

1 + 	
1+��

PNT�t
x=1 �

x
N

!
Wt: (58)

These solutions were derived for the unconstrained problem ignoring (49) and (46). The
expression for C�i;t in (57) demonstrates that (46) is slack. It just remains to show that (49)
is not violated for either household member. First note that X�

t < Wt for any t < NT and
hence the expenditure limit can at most be violated for one household member. Since both
members agree on the level of public consumption and are indi¤erent who pays for it then
(49) will be satis�ed if and only if C�i;t � Wt

2
for both members. This requires

�i �
1 + ��+	

PNT�t
x=1 �

x
N

2�
:

This constraint is more restrictive the higher is t and hence holds in every period if it is true
for the household member with the largest �i in period t = NT � 1. This requires

max f�A; �Bg �
1 + ��+	�

1
N

2�
:
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Using the fact that � = �A + �B � 1 this re-arranges to

j�A � �Bj �
1� �+	� 1

N

�
: (59)

I assume (59) holds and hence (49) is also slack. Thus, conditional on Conjecture 1 being
true (56), (57) and (58) are the unique subgame perfect equilibrium consumption choices.
The �nal step of the derivation is to prove Conjecture 1 by induction. As the �rst step,

note that Conjecture 1 is veri�ed for t = NT above. Next observe that (56) and (57) give
equilibrium consumption levels that are proportional to Wt. Observe also that using (58) we
can compute Wt+1 as

Wt+1 = R
1
N

 
	

1+��

PNT�t
x=1 �

x
N

1 + 	
1+��

PNT�t
x=1 �

x
N

!
Wt

which is also proportional toWt. By extension of (56) and (57) this implies thatH�
t+1; C

�
A;t+1; C

�
B;t+1

are also proportional to Wt. The same argument applies for any period x > t. Hence this
establishes Conjecture 1 by induction.

B Solution to Household Allocation with Full Commitment

This section of the Appendix solves for the full commitment Pareto optimal household
allocation. I solve a generalized model in which both members have a period utility function
that places weight � on the utility from private consumption and 1 � � on the utility from
public consumption Ht as introduced in Section B. Also, I allow individual members to have
a hyperbolic discount factor 	 as introduced in Section C. The results for the rest of the
paper will be special cases of the results I �nd here where � = 1 and/or 	 = 1.
The problem is to solve

max
fCA;t;CB;t;Ht;gt=NT

t=1

� = �VA;1 + (1� �)VB;1 (60)

subject to W1 �
NT�1X
x=0

R�
x
N [CA;1+x + CB;1+x +H1+x] � 0 and (61)

fCA;t; CB;t; HA;t; HB;tgt=NTt=1 � 0. (62)

The objective of this problem can be re-written as

� = (1� �)UA;1 + �UB;1 (63)

where � � �B + � (1� �A � �B) (64)
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using the expressions for UA;1 and UB;1 (63) becomes

� = (1� �)�
"
lnCA;1 +	

NT�1X
x=1

�
x
N lnCA;1+x

#
(65)

+��

"
lnCB;1 +	

NT�1X
x=1

�
x
N lnCB;1+x

#

+(1� �)
"
lnH1 +	

NT�1X
x=1

�
x
N lnH1+x

#
:

I will start by ignoring the non-negativity constraints in (62) and verify that these hold later.
Writing the Lagrangian for the remaining problem with � � 0 being the multiplier on the
resource constraint we have

max
fCA;t;CB;t;Ht;gt=T

t=1

(1� �)�
"
lnCA;1 +	

NT�1X
x=1

�
x
N lnCA;1+x

#
(66)

+��

"
lnCB;1 +	

NT�1X
x=1

�
x
N lnCB;1+x

#

+(1� �)
"
lnH1 +	

NT�1X
x=1

�
x
N lnH1+x

#

+�

"
W1 �

NT�1X
x=0

R�
x
N [CA;1+x + CB;1+x +H1+x]

#
:

The �rst order conditions give the optimal level of expenditure on each type of consumption
in every period as a function of �:

CA;1 : C��A;1 =
(1� �)�

�
(67)

CA;1+x : C��A;1+x =
(1� �)�	� x

N

�R�
x
N

(68)

CB;1 : C��B;1 =
��

�
(69)

CB;1+x : C��B;1+x =
��	�

x
N

�R�
x
N

(70)

H1 : H��
1 =

1� �
�

(71)

H1+x : H��
1+x =

(1� �)	� x
N

�R�
x
N

(72)

where x 2 f1; 2; :::; NT � 1g and �**�indicates solution to the full commitment problem. In
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the �rst period, the optimal level of total expenditure is

X��
1 = C��A;1 + C

��
B;1 +H

��
1 =

1

�
: (73)

For any period after the �rst, the optimal level of total expenditure is

X��
1+x =

	�
x
N

�R�
x
N

: (74)

Since the optimal allocation will exhaust the household budget constraint it must be that

W1 = X
��
1 +

NT�1X
x=1

X��
1+x

R
x
N

=
1

�

"
1 + 	

NT�1X
x=1

�
x
N

#

which implies that

��� =
1 + 	

PNT�1
x=1 �

x
N

W1

: (75)

Combining (75) with (73) and (74) gives

X��
1 =

1

1 + 	
PNT�1

x=1 �
x
N

W1 (76)

and for t > 1

X��
t =

	�
t�1
N

1 + 	
PNT�1

x=1 �
x
N

R
t�1
N W1:

Note that under the full commitment allocation household wealth evolves as

Wt = R
t�1
N W1 �R

t�1
N X��

1 �
t�1X
x=2

R
t�x
N X��

x

= R
t�1
N W1	

" PNT�1
k=t�1 �

k
N

1 + 	
PNT�1

k=1 �
k
N

#

and so

R
t�1
N W1 =

Wt

	

 
1 + 	

PNT�1
k=1 �

k
NPNT�1

k=t�1 �
k
N

!
:

Hence for t > 1, X��
t can be re-written as

X��
t =

	�
t�1
N

1 + 	
PNT�1

x=1 �
x
N

Wt

	

 
1 + 	

PNT�1
k=1 �

k
NPNT�1

k=t�1 �
k
N

!
:
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This simpli�es to

X��
t =

1

1 +
PNT�t

k=1 �
k
N

Wt: (77)

This fully describes the total level of consumption each period under full commitment. The
optimal levels of C��A;t, C

��
B;t, and H

��
t follow immediately by using (67) through (72) to get

the following constant consumption shares within each period.

C��A;t
X��
t

= (1� �)�

C��B;t
X��
t

= ��

H��
t

X��
t

= 1� �:

Note that the optimal solution satis�es (62).

C Representative Agent

This section of the Appendix solves the problem of the representative agent without
commitment. Since the representative agent is allowed to have hyperbolic time preferences
I study for the subgame perfect equilibrium path Xr�

t where the agent rationally anticipates
the consumption choices she will make later in life (i.e. does not naively and incorrectly
expect to follow the optimal consumption plan for the rest of her life). The goal is to �nd
values for �r and 
r that ensure X

r�
t = X�

t in every period.

C-1 Equilibrium Consumption

In the �nal period t = NT the representative agent will optimal consume all remaining
wealth

Xr�
NT = WNT :

In order to solve for equilibrium consumption choices for all t < NT I make the following
conjecture.

Conjecture 2: The subgame perfect equilibrium household allocation of the representative
agent from t until NT is proportional to Wt. That is, for any period t 2 f1; :::; NTg
the subgame perfect equilibrium levels of Xt can be written as Xr�

t+x = kt+xWt for x 2
f0; 1; :::; NT � tg where kt+x are strictly positive constants independent of Wt.

I establish Conjecture 2 by induction. Consider the problem that the representative agent
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faces in period t < NT

max
Xt

lnXt + 
r

NT�tX
x=1

�
x
N
r lnX

r�
t+x (78)

subject to

Wt+1 = R
1
N (Wt �Xt) , (79)

Xt � Wt, and (80)

Xt � 0. (81)

I will solve this problem ignoring (80) and (81) and verify that these are satis�ed at the
end. Using Conjecture 2, substituting (79) into the objective function, and ignoring constant
terms transforms the problem to

max
Xt

lnXt + 
r

NT�tX
x=1

�
x
N
r ln (Wt �Xt) : (82)

The �rst order condition for this problem is

1

Xr�
t

� 
r
PNT�t

x=1 �
x
N
r

Wt �Xr�
t

= 0:

Which can be rearranged to give the equilibrium consumption choice of the representative
agent in any period as

Xr�
t =

1

1 + 
r
PNT�t

x=1 �
x
N
r

Wt: (83)

I can now prove Conjecture 2 by induction. First, observe that it is veri�ed for t = NT
above. Next, observe that (83) shows that Xr�

t is proportional to Wt. Moreover, since wealth
will evolve under these equilibrium choices as

Wt+1 =
R

1
N
r

PNT�t
x=1 �

x
N
r

1 + 
r
PNT�t

x=1 �
x
N
r

Wt

then Wt+1 is also proportional to Wt. By extension of (83) this implies Xr�
t+1 is proportional

to Wt and so on for all
�
Xr�
t+x

	NT�t
x=1

. This establishes Conjecture 2.

C-2 Equivalence with Household Equilibrium

Comparing (58) and (83) we see that Xr�
t = X�

t if

�r = � and 
r =
	

1 + ��
: (84)
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To establish that (84) is a necessary condition consider what is required to achieve equivalence
in t = NT � 1 and NT � 2. This requires

t = NT � 1 : 
r�
1
N
r =

	

1 + ��
�

1
N and (85)

t = NT � 2 : 
r
h
�

1
N
r + �

2
N
r

i
=

	

1 + ��

h
�

1
N + �

2
N

i
: (86)

To satisfy (85) it must be that


r =
	

1 + ��

�
�

�r

� 1
N

: (87)

Substituting (87) into (86) gives

	

1 + ��

�
�

�r

� 1
N h
�

1
N
r + �

2
N
r

i
=

	

1 + ��

h
�

1
N + �

2
N

i
which upon simpli�cation uniquely requires �r = � and therefore implies that 
r = 	

1+��

must also hold. Thus (84) is a necessary condition for equivalence if NT > 2 and �nite. Note
that if NT = 2 then any combination of 
r and �r that satis�es (87) is su¢ cient and (84) is
therefore not a necessary condition. This establishes Proposition 2.

D CRRA Utility

In this section of the Appendix I analytically characterize the non-cooperative equilibrium
levels of household consumption. I then characterize the solution to the associated planners
problem with full commitment. Finally, I characterize the solution for the representative
agent with CRRA utility and establish equivalence in the symmetric case where �A = �B.
Since these steps mirror many of the proofs in the �rst three sections of the Appendix I keep
derivations brief. To simplify notation let � = 1

�
.

D-1 Non-Cooperative Equilibrium Household Consumption with CRRA Utility

To start I conjecture a form for the value function of each member in any.

Conjecture 3: The subgame perfect equilibrium household allocation when member�s have
CRRA utility gives rise to a value function for member i in period of the form

Vi;t (Wt) =
�i;t
1� �W

1��
t

where �i;t is a positive constant independent of Wt.

Conjecture 3 will be proved by induction. Consider the problem faced by member i in
period t using the assumed form of the value function for period t+ 1. They will choose Ci;t
taking Cj;t as given to solve
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max
Ci;t

�i
1� � (Ci;t)

1�� +
1� �i
1� � (Cj;t)

1�� + �
1
N
�i;t+1
1� �W

1��
t+1 (88)

subject to

Wt+1 = R
1
N (Wt � Ci;t � Cj;t) , (89)

Ci;t �
Wt

2
, and (90)

Ci;t � 0. (91)

Start by ignoring (90) and (91). Substituting (89) into (88) and ignoring terms that i takes
as given allows us to rewrite her problem as

max
Ci;t

�i
1� � (Ci;t)

1�� + �
1
NR

1��
N
�i;t+1
1� � (Wt � Ci;t � Cj;t)1�� :

The �rst order condition is

�iC
��
i;t � �

1
NR

1��
N �i;t+1 (Wt � Ci;t � Cj;t)�� = 0:

Rearranging this gives �{�s best response to any Cj;t:

Ci;t = (Wt � Cj;t)Mi;t (92)

where
Mi;t =

1

1 +

�
�
1
N R

1��
N �i;t+1
�i

� 1
�

2 (0; 1) (93)

Solving both members best response functions simultaneously gives the subgame equilibrium
consumption choices of

C�i;t =
(1�Mj;t)Mi;t

1�Mi;tMj;t

Wt: (94)

Total equilibrium consumption in period t is thus

X�
t =

�
MA;t +MB;t � 2MA;tMB;t

1�MA;tMB;t

�
Wt: (95)

Using (95) gives that in equilibrium household wealth evolves according to

Wt+1 = R
1
N

�
1�MA;t �MB;t +MA;tMB;t

1�MA;tMB;t

�
Wt: (96)

Putting (94) and (96) into (88) we can write the value function for both member i in
period t:

Vi;t (Wt) =
�i;t
1� �W

1��
t (97)
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where

�i;t = �A

�
(1�Mj;t)Mi;t

1�MA;tMB;t

�1��
(98)

+(1� �i)
�
(1�Mi;t)Mj;t

1�MA;tMB;t

�1��
+�

1
N�i;t+1

�
R

1
N

�
1�MA;t �MB;t +MA;tMB;t

1�MA;tMB;t

��1��
:

In the �nal period equilibrium consumption will be

C�i;NT =
WNT

2
for i = A;B: (99)

Thus the value function for each household member in the �nal period is:

Vi;NT (WNT ) =
�i;NT
1� � (WNT )

1�� where �i;NT =
�
1

2

�1��
: (100)

This veri�es Conjecture 3 for t = NT . Moreover, (98) and (98) show that conditional on the
conjecture being true for t + 1 then it is also true for t. Hence this establishes Conjecture 3
by an argument of induction.
Note that (100) de�nes �i;NT . Using �i;NT and (98) �xes �i;NT�1. By the same argument

a recursive application of (98) �xes the entire series f�i;tgNTt=1 for i = A;B. This series and
(93) then �xes the entire series fMi;tgNTt=1 for i = A;B. And this using (94) and (95) �xes the
entire series of equilibrium consumption decisions

�
C�i;t
	NT
t=1

for i = A;B and fX�
t g
NT
t=1.

Finally, we need to check that the constraints (90) and (91) are satis�ed. The solution
for optimal consumption demonstrates that (91) is satisi�ed. Since

C�i;t
Wt

is increasing in t it
is su¢ cient to show that (90) holds for t = NT � 1 for both members. Using (94), we have
that

C�i;NT�1
WNT�1

� 1
2
if and only if

Mi;NT�1 (2�Mj;NT�1) � 1: (101)

Note that using (100) and (93) gives that

Mi;NT�1 =
1

1 +

�
�
1
N R

1��
N

�i21��

� 1
�

: (102)

Observe that Mi;NT�1 is strictly increasing in �i and so ensuing (101) holds for the member
with highest �i will be necessary and su¢ cient. Combining (101) and (102) and rearranging
gives

(�i)
1
� � (�j)

1
� �

 
�

1
NR

1��
N

21��

! 1
�

: (103)
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Since (103) must hold for both members we require

���(�i) 1� � (�j) 1� ��� �  � 1
NR

1��
N

21��

! 1
�

: (104)

Note that when � = 1 (i.e. the log utiltiy case) (104) reduces to (8). Since we assume
paramters satisfy this condition this veri�es that (90) is satisi�ed everywhere along the equi-
librium consumption path.

D-2 Full Commitment Consumption Path with CRRA Utility

I now characterize the full commitment consumption path in the case where both members
have CRRA period utility functions. I do this by supposing that W1 is divided between
member A and B so that A receives (1� �)W1 and B receives �W1 where � is de�ned
in (64). For both members the optimal path of consumption will be characterized by the
standard envelope condition:

@

@�

8><>:
�
C��i;t +�

�
1� �

1��

+ �
1
N

�
C��i;t+1 �R

1
N�
�

1� �

1��9>=>;
�=0

= 0 (105)

which simpli�es to give the standard Euler equation relating the optimal choice of consump-
tion in one period to the next:

C��i;t+1 = (R�)
1
�N C��i;t : (106)

Equation (106) implies that
C��i;t = (R�)

t�1
�N C��i;1: (107)

Since the optimal allocation must exhaust the wealth allocated to A it must be that

C��A;1 +
C��A;2

R
1
N

+
C��A;3

R
2
N

+ :::+
C��A;NT

R
NT�1
N

= (1� �)W1

which in combination with (107) gives that

C��A;1 =
(1� �)W1PNT�1

x=0 
x
where 
 �

�
R1���

� 1
�N : (108)

Combining (108) and (107) gives the optimal level of consumption for member A in every
period

C��A;t = (R�)
t�1
�N

"
1� (R1���)

1
�N

1� (R1���)
T
�

#
(1� �)W1: (109)
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By symmetry, the full commitment solution for B is

C��B;t = (R�)
t�1
�N

"
1� (R1���)

1
�N

1� (R1���)
T
�

#
�W1: (110)

Adding (109) and (110) gives the optimal level of total household consumption in each period:

X��
t = (R�)

t�1
�N

"
1� (R1���)

1
�N

1� (R1���)
T
�

#
W1: (111)

This fully characterizes the optimal allocation for the household when both members have
CRRA period utility functions.

D-3 Representative Agent with CRRA Utility

I establish the equivalance of the representative agent and the symmetric non-cooperative
household (�A = �B) by �nding necessary and su¢ cent conditions on �r and 
r. To start, I
make the following supposition:

Supposition 1: Suppose that for some t 2 f1; NT � 1gthe representative agent and a sym-
metric household have the same consumption path from t+1 onwards (conditional on starting
t+ 1 with the same wealth).

The consumption path of the representative agent can be written as

fXr�
x g

x=NT
x=t+1 =

�
�tt+1Wt+1; �

t
t+2Wt+1; :::; �

t
NTWt+1

	
: (112)

Supposition 1 implies that for both i

�
C�i;x
	x=NT
x=t+1

=

�
�tt+1
2
Wt+1;

�tt+2
2
Wt+1; :::;

�tNT
2
Wt+1

�
: (113)

Anticipating a consumption path of (112) for any wealth left into period t+ 1 the repre-
sentative agent will choose Xt to solve

max
Xt

(Xt)
1��

1� � + 
r

"
NT�tX
x=1

�
x
N
r

�
�tt+x

�1��# (Wt+1)
1��

1� �

subject to Wt+1 = R
1
N (Wt �Xt)

Substituting the constraint into the objective reduces the representative agent�s problem to

max
Xt

(Xt)
1��

1� � + 
r

"
NT�tX
x=1

�
x
N
r

�
�tt+x

�1��# �R 1
N (Wt �Xt)

�1��
1� �
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which can be re-written as

max
Xt

(Xt)
1��

1� � +

r
1� ��r;t+1 (Wt �Xt)

1��

where

�r;t+1 � R
1��
N

NT�tX
x=1

�
x
N
r

�
�tt+x

�1��
: (114)

The �rst order condition for the representative agent�s problem is

X��
t � 
r�r;t+1 (Wt �Xt)

�� = 0

and can be simpli�ed to give the choice of conumption in period t of:

Xr�
t =

1

1 + (
r�r;t+1)
1
�

Wt: (115)

Now consider the problem faced by household member i in period t anticipating a consumption
path of (113) to follow in t+1 onwards conditional on the level of wealth Wt+1. She will take
Cj;t as given and choose Ci;t to solve

max
Ci;t

�i
1� � (Ci;t)

1�� +
1� �i
1� � (Cj;t)

1�� +

"
NT�tX
x=1

�
x
N

�
�tt+x
2

�1��#
(Wt+1)

1��

1� �

subject to Wt+1 = R
1
N (Wt � Ci;t � Cj;t) :

Substituting the constraint into the objective reduces member i�s problem to

max
Ci;t

�i
1� � (Ci;t)

1�� +
1� �i
1� � (Cj;t)

1�� +

"
NT�tX
x=1

�
x
N

�
�tt+x
2

�1��# �R 1
N (Wt � Ci;t � Cj;t)

�1��
1� �

which can be re-written as

max
Ci;t

�i
1� � (Ci;t)

1�� +
1� �i
1� � (Cj;t)

1�� +
�i;t+1
1� � (Wt � Ci;t � Cj;t)1��

where

�i;t+1 �
�
1

21��

�
R

1��
N

NT�tX
x=1

�
x
N

�
�tt+x

�1��
=

�
1

21��

�
�r;t+1 (116)

The �rst order condition is

�iC
��
i;t ��i;t+1 (Wt � Ci;t � Cj;t)�� = 0:
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By an argument of symmetry it must be that C�i;t = C
�
j;t and so this can be simpli�ed to give

C�i;t =
1

2 +
�
�i;t+1
�i

� 1
�

Wt:

Since the household is symemtric, total household expenditure in period t will be twice C�i;t:

X�
t =

2

2 +
�
�i;t+1
�i

� 1
�

Wt: (117)

Equating (115) and (117) shows that, conditional on starting the period with Wt, the
representative agent will have the same level of consumption as the household in period t if
and only if

2�
r�i�r;t+1 = �i;t+1: (118)

Using (114) and (116) we can rewrite (118) as

2
r�i

NT�tX
x=1

�
x
N
r

�
�tt+x

�1��
=

NT�tX
x=1

�
x
N

�
�tt+x

�1��
:

Equating terms, this will hold if

�r = � and 
r =
1

2�i
(119)

To show that (119) are necessary conditions, note that If NT = 2 then any combination of


r and �r for which 2
r�i�
1
N
r = �

1
N will satisify this. If NT > 2 then for this to be true in

every period requires

t = NT � 1 : 2
r�i�
1
N
r = �

1
N (120)

t = NT � 2 : 2
r�i
h
�

1
N
r

�
�tNT�1

�1��
+ �

2
N
r

�
�tNT

�1��i
= �

1
N

�
�tNT�1

�1��
+ �

2
N

�
�tNT

�1��
(121)

Substituting (120) into (121) shows that for both to hold requires �r = �. With (120) this
gives 
r = 1

2�i
is and demonstrates that (119) is necessary and su¢ cient whenever NT > 2.

If these conditions hold then Suppostion 1 can be proved by induction. Note that the
Supposition is true for t = NT � 1 since all remaining wealth is consumed in the �nal period
for both the representative agent and the non-cooperative household (i.e. �tNT = 1). This
proof then establishes the conjecture for t = NT � 2 and so on by iteration. This establishes
Proposition 3.
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E Consecutive Consumption Choices

This section of the Appendix solves for the unique equilibrium consumption path in the
consecutive move version of the model introduced in Section V of the paper.

E-1 Equilibrium at t = NT

In the �nal period member B will optimally consume all remaining wealth:

C�ConB;NT =
fWNT : (122)

Anticipating (122), member A will choose CA;NT to solve

max
CA;NT

�A lnCA;NT + (1� �A) ln (WNT � CA;NT ) (123)

subject to CA;NT � 0 and (124)

WNT � CA;NT � 0. (125)

Ignoring (124) and (125) since they will not bind at the optimal choice, A�s consumption
choice is characterized by the �rst order condition

�A
C�A;NT

� 1� �A
WNT � C�A;NT

= 0: (126)

Rearranging (126) and combing with (122) gives the equilibrium consumption levels for A
and B in t = NT :

C�A;NT = �AWNT and (127)

C�B;NT = (1� �A)WNT : (128)

And total equilibrium consumption in t = NT is simply

X�
NT = WNT . (129)

E-2 Solve for the Subgame Perfect Consumption path by Induction

I conjecture the following form for the subgame perfect household allocation.

Conjecture 4: The subgame perfect equilibrium household allocation from t until NT is
proportional to Wt. That is, for any period t 2 f1; :::; NTg the subgame perfect equilibrium
levels of C�A;t and C

�
B;t can be written as C

�
t+x = gi;t+xWt for x 2 f0; 1; :::; NT � tg where

gi;t+x are strictly positive constants independent of Wt.

I establish Conjecture 4 by induction. The problem that member B solves in any period
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t taking fWt as given is:

max
CB;t

�B lnCB;t +

TN�tX
x=1

�
x
N

�
(1� �B) lnCCon�A;t+x + �B lnC

Con�
B;t+x

�
(130)

subject to

Wt+1 = R
1
N

�fWt � CB;t
�
, (131)

CB;t � 0, and (132)fWt � CB;t � 0. (133)

Conjecture 4 implies that

TN�tX
x=1

�
x
N

�
(1� �B) lnCCon�A;t+x + �B lnC

Con�
B;t+x

�
= �t+1 lnWt+1 + ki;t (134)

where

�t+1 �
TN�tX
x=1

�
x
N (135)

and ki;t is a constant. In equilibrium (132) and (133) will not bind and hence I ignore those
constraints and verify this later. Using (134) in (130) and substituting in the intertemporal
budget constraint (131) allows me to simplify B�s problem to:

max
CB;t

�B lnCB;t + �t+1 ln
�fWt � CB;t

�
:

The �rst order condition is
�B
CB;t

� �t+1fWt � CB;t
= 0

which gives B�s best response for any given level of fWt:

eC�B;t = �B
�B + �t+1

fWt: (136)

Note that (136) veri�es that (132) and (133) are satisi�ed in equilibrium.
Member A will anticipate (136) and choose CA;t to solve

max
CA;t

�A lnCA;t + (1� �A) ln eC�B;t + TN�tX
x=1

�
x
N

�
�A lnC

Con�
A;t+x + (1� �A) lnCCon�B;t+x

�
(137)

subject to (136),

Wt+1 = R
1
N

�
Wt � CA;t � eC�B;t� , (138)

CA;t � 0, and (139)

Wt � CA;t � 0. (140)
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I ignore (139) and (140) and verify that they are satisi�ed at the end. Using the analog
of (132) for A and substituting (138) and (136) into (137) we rewrite A�s problem (ignoring
constants) as:

max
CA;t

�A lnCA;t +
�
(1� �A) + �t+1

�
ln (Wt � CA;t) :

The �rst order condition is

�A
CCon�A;t

� (1� �A) + �t+1
Wt � CCon�A;t

= 0:

Which gives A�s optimal consumption choice as

CCon�A;t =
�A

1 + �t+1
Wt: (141)

Note that (141) demonstrates that (139) and (140) are satis�ed as conjectured. Substituting
(141) into (136) gives B�s equilibrium consumption choice as a function of Wt:

CCon�B;t =
�B

�B + �t+1

�
1 + �t+1 � �A
1 + �t+1

�
Wt: (142)

Adding (141) and (142) gives the equilibrium level of total consumption in period t:

XCon�
t =

 
1

1 +
PTN�t

x=1 �
x
N

! 
�B + (�A + �B)

PTN�t
x=1 �

x
N

�B +
PTN�t

x=1 �
x
N

!
Wt: (143)

Note �nally that Conjecture 4 was veri�ed about for the case of t = NT . Moreover (141)
and (142) demonstrate that it is true for t = NT � 1 and so on by iteration. This establishes
Conjecture 4 by induction.

E-3 Comparison of Consecutive and Simultaneous Move Equilibria

Comparing (14) to (143) gives

X�
t

XCon�
t

=
�2t + (1 + �B) �t + �B

�2t +
�

�B
�A+�B

+ (�A + �B)
�
�t + �B

where �t �
PTN�t

x=1

h
�

1
N

ix
. Taking the limit of this ratio as N !1 requires �nding

lim
N!1

X�
t

XCon�
t

= lim
N!1

�2t + (1 + �B) �t + �B

�2t +
�

�B
�A+�B

+ (�A + �B)
�
�t + �B

:
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Since both the numerator and denominator tend to in�nity we can apply L�Hopital�s rule to
get

lim
N!1

X�
t

XCon�
t

= lim
N!1

@�t
@N
(2�t + (1 + �B))

@�t
@N

�
2�t +

�B
�A+�B

+ (�A + �B)
�

= lim
N!1

2�t + (1 + �B)

2�t +
�B

�A+�B
+ (�A + �B)

:

Again both the numerator and denominator tend to in�nity so we can re-apply L�Hopital�s
rule to get

lim
N!1

X�S
t

X�
t

= lim
N!1

2�t + (1 + �B)

2�t +
�B

�A+�B
+ (�A + �B)

= lim
N!1

2@�t
@N

2@�t
@N

= 1:

This establishes Proposition 7.
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Figure 1 
Equilibrium and Full Commitment Consumption Path 

This plot shows the equilibrium level of total household expenditure in every period without commitment X*
t and the 

optimal full commitment consumption path X**
t. It is drawn using the following parameters: Initial household wealth is 

W1=3,000,000, the exponential discount factor is =0.95, the gross interest rate is R=1/0.95, the household exists for 
T=50 years and there are N=1 period within each year. The figure compares the scenario where household members 
place weight on their own utility of  =0.6 and  =0.7.  
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Figure 2 
Comparative Statics: The Value of Commitment 

These plots show the fraction of W1 that the household would be willing to pay at t=1 to achieve the full commitment 
consumption path. Due to log additive utility functions this fraction is invariant to the choice of W1. Each panel shows 
how the value of commitment varies with: == the weight household members place on their own utility (Panel A); 
 the discount factor of each household member (Panel B), the weight member A places on her own utility holding 
ΔA +B - 1=0.2 constant. Apart from the variable on the x-axis, each plot is drawn using the following parameters: 
the weight both household members place on their own utility is  =0.6, their exponential discount factor is 
=0.95, the gross interest rate is R=1/0.95 and the household exists for T=50 years with N=1 periods per year.  
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Figure 3 
Household with CRRA Preferences 

These plots study how changing the EIS varies the consumption path and value of commitment for the household. 
Each panel is drawn using the following parameters: Initial household wealth is W1=3,000,000, A=B=0.6, exponential 
discount factor is =0.95, the gross interest rate is R=1/0.95, the household exists for T=50 years and there are N=1 
period within each year. Panel A shows the equilibrium level of total household expenditure in every period without 
commitment X*

t for values of EIS of 0.5, 1, and 1.5 as well as the optimal full commitment consumption path X**
t.(it is 

the same for all three parameters). Panel B shows how the value of commitment varies with the EIS. 
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Figure 4 
The Value of Commitment with Public Consumption 

This plot shows the fraction of W1 that the household would be willing to pay at t=1 to achieve the full commitment 
consumption path for different values of  Due to log additive utility functions this fraction is invariant to the choice of 
W1. It is drawn using the following parameters: the weight both household members place on their own utility is =0.6, 
their exponential discount factor is =0.95, the gross interest rate is R=1/0.95 and the household exists for T=50 years 
with N=1 periods per year.  
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Figure 5 
Comparative Statics: The Value of Commitment with Hyperbolic Individuals 

These plots show the amount the household would be willing to pay at t=1 (as a fraction of W1) to achieve the full 
commitment consumption path. Due to log additive utility functions this fraction will be invariant to the choice of W1. 
The figure shows how the value of commitment varies with i.e varying both symmetrically). It is drawn for 
individual hyperbolic discount factors of =1 and =0.85 holding other parameters constant at, =0.95, R=1/0.95, 
T=50, and N=1. 
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