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Tobin’s q is a central construct in finance and economics more broadly. Early manifestations of

the q theory of investment, including by Hayashi (1982), predict that Tobin’s q perfectly measures

a firm’s investment opportunities. As a result, Tobin’s q has become the most widely used proxy for

investment opportunities, making it “arguably the most common regressor in corporate finance”

(Erickson and Whited, 2012).

Despite the popularity and intuitive appeal of q theory, its empirical performance has been disap-

pointing.1 Regressions of investment rates on proxies for Tobin’s q leave large unexplained residuals.

Extra variables like cash flow help explain investment, contrary to the theory’s predictions. One

potential explanation is that q theory, at least in its earliest forms, is too simple. Several authors,

spanning from Hayashi (1982) to Gala and Gomes (2013), show that we should expect a perfect

linear relation between investment and Tobin’s q only in very special cases. A second possible

explanation is that we measure q with error, which has spawned a sizeable literature developing

techniques to measure q more accurately and correct for measurement-error bias.2

This paper’s goal is to reduce one type of measurement error in q and gauge how the investment-q

relation changes. One challenge in measuring q is quantifying a firm’s stock of capital. Physical as-

sets like property, plant, and equipment (PP&E) are relatively easy to measure, whereas intangible

assets like brands, innovative products, patents, software, distribution systems, and human capital

are harder to measure. For example, U.S. accounting rules treat research and development (R&D)

spending as an expense rather than an investment, so the knowledge created by a firm’s own R&D

almost never appears as an asset on its balance sheet.3 That knowledge is nevertheless part of the

firm’s economic capital: it was costly to obtain, it is owned by the firm,4 and it produces future

expected benefits. Corrado and Hulten (2010) estimate that intangible capital makes up 34% of

firms’ total capital in recent years, so the measurement error that results from from omitting intan-

1See Hassett and Hubbard (1997) and Caballero (1999) for reviews of the investment literature. Philippon (2009)
gives a more recent discussion.

2See Erickson and Whited (2000, 2002, 2012); Almeida, Campello, and Galvao (2010); and Erickson, Jiang, and
Whited (2013). Erickson and Whited (2006) provide a survey.

3We review the U.S. accounting rules on intangible capital in Section 1.
4A firm can own the knowledge directly using patents or indirectly using proprietary information contracts with

employees. A firm owns its brand via trademarks. Human capital is not owned by the firm, although firm-specific
human capital or employee non-compete agreements can make human capital behave as if partially owned by the
firm. Eisfeldt and Papanikolaou (2013, 2014) analyze the unique ownership characteristics of organization capital.
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gible capital is arguably large. We develop measures of q and investment that include both physical

and intangible capital, and we show that these measures produce a stronger empirical investment-q

relation. Our results have important implications for how researchers choose proxies for investment

opportunities, and for how we evaluate the classic q theory of investment.

Our q measure, which we call total q, is the ratio of firm operating value to the firm’s total

capital stock, which equals the sum of its physical and intangible capital. Similarly, our measure

of total investment is the sum of physical and intangible investments divided by the firm’s total

capital. A firm’s intangible capital is the sum of its knowledge capital and organizational capital.

We interpret R&D spending as an investment in knowledge capital, and we apply the perpetual

inventory method to a firm’s past R&D spending to measure its current stock of knowledge capital.

We similarly interpret a fraction of past sales, general, and administrative (SG&A) expenses as

investments in organizational capital. Our measure of intangible capital builds on the measures of

Falato, Kadryzhanova, and Sim (2013), Eisfeldt and Papanikolaou (2013, 2014), and Zhang (2014),

which in turn build on the macro measures of Corrado, Hulten, and Sichel (2009) and Corrado and

Hulten (2010, 2014). One innovation in our measure is that we include firms’ externally acquired

intangible assets, which do appear on the balance sheet. While our measure imposes some strong

assumptions on the data, we believe an imperfect proxy is better than simply setting intangible

capital to zero— the typical implicit assumption in the literature. Also, one benefit of our measure

is that it is easily computed for the full Compustat sample, and we show that our conclusions are

robust to several variations on our measure.

Our analysis begins with OLS panel regressions of investment rates on proxies for q and cash

flow, similar to the classic regressions of Fazzari, Hubbard, and Petersen (1988). We compare a

specification that includes intangible capital in investment and q to the more typical specification

that regresses physical investment (CAPX divided by PP&E) on “physical q,” the ratio of firm

value to PP&E. The specifications with intangible capital deliver an R2 that is 37–55% higher. In

a horse race between total q and physical q, total q remains strongly positively related to the total

investment rate, whereas physical q becomes slightly negatively related. These results imply that

total q is a better proxy for investment opportunities than is the usual physical q.
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The OLS regressions suffer from two well known problems. The first is that the slopes on q are

biased due to measurement error in q. Second, the OLS R2 depends not just on how well q explains

investment, but also on how well our q proxies explain the true, unobservable q. To obtain unbiased

slopes and measure how close our q proxies are to the true q, we re-estimate the investment models

using Erickson, Jiang, and Whited’s (2013) linear cumulant estimator. This estimator produces

a statistic τ2 that measures how close our q proxy is to the true, unobservable q. Specifically, τ2

is the R2 from a hypothetical regression of our q proxy on the true q. We find that τ2 is 9–20%

higher when one includes intangible capital in the investment-q regression, implying that total q is

a better proxy for true q than physical q is.

The cumulant estimator also produces unbiased slopes on q. Compared to the specifications with

physical capital, the specifications including intangible capital produce estimated q-slopes that are

169–174% higher. These slopes are difficult to interpret, even after correcting for measurement-error

bias. Several papers interpret the q-slopes as the inverse of a capital adjustment-cost parameter.

Whited (1994) shows, however, that this interpretation is flawed.

Of more interest are the estimated slopes on cash flow. The classic q theory predicts a zero slope

on cash flow after conditioning on q. Fazzari, Hubbard, and Petersen (1988) and others find positive

slopes on cash flow, which they interpret as evidence of financial constraints. Erickson and Whited

(2000) show that these slopes become insignificant after correcting for measurement error in q.

These papers measure cash flow as profits net of R&D and SG&A outlays. Like Nakamura (2003),

we argue that these outlays are investments rather than operating expenses, so one should add

them back to obtain a more economically meaningful measure of cash flow available for investment.

After making this adjustment, we find cash-flow slopes that are almost an order of magnitude

larger. This result is inconsistent with the classic q theory of investment. More general theories,

however, including by Hennessy and Whited (2007), predict positive cash-flow slopes even when

firms invest optimally and face no financial constraints.

Our main results so far are that including intangible capital results in a stronger investment-q

relation, and also a stronger investment-cash flow relation. Next, we show that these results are

consistent across firms with high and low amounts of intangible capital, across the early and late
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sub-periods, and across almost all industries. As expected, though, some results are stronger where

intangible capital is more important. For example, the increase in R2 from including intangible

capital is more than three times larger in the quartile of firms with the highest proportion of in-

tangible capital, compared to the lowest quartile. The increase in R2 is slightly higher, although

not consistently so, in the later half of the sample, when firms use more intangible capital. The

increase in R2 is larger in the high-tech and health-care industries than in the manufacturing indus-

try. Several important studies on q and investment use data only from manufacturing firms.5 Our

findings imply that including intangible capital is important even in the manufacturing industry,

but is especially important if one looks beyond manufacturing to the industries that increasingly

dominate the economy.

Next, we show that many of these results also hold in macroeconomic time-series data. Our macro

measure of intangible capital is from Corrado and Hulten (2014) and is conceptually similar to our

firm-level measure. Including intangible capital in investment and q results in an R2 value that

is 17 times larger and a slope on q that is nine times larger. Almost all the improvement comes

from adjusting the investment measure rather than adjusting q. Our increase in R2 is even larger

than the one Philippon (2009) obtains from replacing physical q with a q proxy estimated from

bond data. Philippon’s bond q is still a superior proxy for physical investment opportunities and

performs better when we estimate the model in first differences.

To help explain these results, we provide a simple theory of optimal investment in physical

and intangible capital. The theory predicts that total q is the best proxy for total investment

opportunities, whereas physical q is a noisy proxy even for physical investment opportunities.

These predictions help explain why our regressions produce higher R2 and τ2 values when we use

total rather than physical capital. The theory also predicts that a regression of physical investment

on physical q will produce downward-biased slopes on q, which is consistent with our estimated

q-slopes.

Two main messages emerge from our analysis. First, researchers using Tobin’s q as a proxy for

investment opportunities should include intangible capital in their proxies for q, investment, and

5Almeida and Campello (2007) and Almeida, Campello and Galvao (2010), and Erickson and Whited (2012)
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cash flow. We provide proxies that are easily computed for the full Compustat universe. Second,

including intangible capital changes our assessment of the classic q theories that predict a linear

investment-q relation. On the one hand, including intangible capital produces higher R2 values,

meaning the theories fit the data better. On the other hand, cash-flow coefficients become much

larger, contrary to the theories’ predictions.

This is not the first paper to examine the relation between intangible investment and q. Almeida

and Campello (2007) use q, cash flow, and asset tangibility to forecast R&D investment. Eisfeldt

and Papanikolaou (2013) find a positive relation between investment in organization capital and q.

Closer to our specifications, Baker, Stein, and Wurgler (2002) construct investment measures that

combine CAPX, R&D, and SG&A, and they relate them to q. Chen, Goldstein and Jiang (2007)

use q to forecast the sum of physical investment and R&D. All these papers use a q proxy that is

close to what we call physical q. Besides having a different focus,6 our paper is the first to fully

include intangible capital not just in investment, but also in q and cash flow.

There is also a sizable literature that studies the impact of intangible investment on firms’ valu-

ations. For example, Megna and Klock (1993) and Klock and Megna (2001) show that intangible

capital is an important component of semiconductor and telecommunication firms’ market val-

uations. Similarly, Chambers, Jennings and Thompson (2002) and Villalonga (2004) find that

firms with larger stocks of intangible capital exhibit stronger performance and market valuations.

Nakamura (2003) examines the effect of aggregate intangible investment on the U.S. stock market.

This paper also contributes to the broader finance literature on intangible capital. Brown, Fazzari,

and Petersen (2009) show that shifts in the supply of internal and external equity finance drive

aggregate R&D investment. Falato, Kadyrzhanova and and Sim (2013) document a strong empirical

link between intangible capital and firms’ cash holdings, and they argue that the link is driven by

debt capacity. Eisfeldt and Papanikolaou (2013) show that firms with more organization capital

have higher average stock returns. McGrattan and Prescott (2000), Hall (2001), and Hansen,

Heaton and Li (2005) all use models to infer the quantity of intangible capital from financial price

6Almeida and Campello (2007) mainly examine how asset tangibility affects investment levels through borrowing
capacity. Eisfeldt and Papanikolaou (2013) focus on the cross-section of expected returns. Baker, Stein, and Wurgler
(2002) mainly ask whether investment is sensitive to stock mispricing. Chen, Goldstein and Jiang (2007) focus on
whether private information in prices affects the investment-price sensitivity.
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data. In contrast, we measure intangible capital directly from accounting data.

The paper proceeds as follows. Section 1 describes the data and our measure of intangible capital.

Section 2 presents results from OLS regressions, and section 3 presents results that correct for

measurement-error bias. Section 4 compares results for different types of firms and years. Section

5 contains results for the overall macroeconomy. Section 6 presents our theory of investment in

physical and intangible capital. Section 7 explores the robustness of our empirical results, and

section 8 concludes.

1 Data

This section describes the data in our main firm-level analysis. Section 5 describes the data in our

macro time-series analysis.

The sample includes all Compustat firms except regulated utilities (SIC Codes 4900–4999), finan-

cial firms (6000–6999), and firms categorized as public service, international affairs, or non-operating

establishments (9000+). We also exclude firms with missing or non-positive book value of assets

or sales, and also firms with less that $5 million in physical capital, as is standard in the literature.

We use data from 1975 to 2010, although we use earlier data to estimate firms’ intangible capital.

Our sample starts in 1975, because this is the first year that FASB requires firms to report R&D.7

We winsorize all regression variables at the 1% level to remove extreme outliers.

1.1 Tobin’s q

To measure physical q, we follow Fazzari, Hubbard and Petersen (1988), Erickson and Whited

(2012), and others who measure q as

qphy =
Mktcap+Debt−AC

PP&E
, (1)

where Mktcap is the market value of outstanding equity, Debt is the book value (a proxy for the

market value) of outstanding debt (Compustat items dltt + dlc), AC is the current assets of the

7See FASB, “Accounting for Research and Development Costs,” Statement of Financial Accounting Standards
No. 2, October 1974.
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firm, such as cash, inventory, and marketable securities (Compustat item act), and P&PE is the

book value of property, plant and equipment (Compustat item ppegt). All of these quantities are

measured at the beginning of the period. Section 7 explores other common ways of measuring

physical q.

Our measure of total q includes both physical and intangible capital:

qtot ≡
Mktcap+Debt−AC

PP&E + Intan
= qphy

PP&E

PP&E + Intan
. (2)

Intan is the firm’s stock of intangible capital, defined in the next sub-section. Section 6 provides a

theoretical rationale for adding together physical and intangible capital in qtot. A simpler but less

satisfying rationale is that existing studies measure capital by summing up many different types

of physical capital into PP&E; our measure simply adds one more type of capital to that sum.

Equation (2) shows that qtot equals qphy times the ratio of physical to total capital. While the

correlation between physical and total q in our sample is quite high, 0.81, the measures produce

quite different results in investment regressions.

1.2 Intangible Capital and Investment

We briefly review the U.S. accounting rules for intangible capital before defining our measure,

Intan. The accounting rules depend on whether the firm develops the intangible asset internally

or purchases it externally, for example, by acquiring another firm.

Intangible assets developed within a firm are expensed on the income statement and almost never

appear on the balance sheet.8 For example, a firm’s spending to develop knowledge, patents, or

software is expensed as R&D. Advertising to build brand value is a selling expense within SG&A.

Employee training to build human capital is a general or administrative expense within SG&A.

In contrast, intangible assets purchased externally are capitalized on the balance sheet as In-

tangible Assets, which equals the sum of Goodwill and Other Intangible Assets. If the asset is

8See FASB, “Accounting for Research and Development Costs,” Statement of Financial Accounting Standards
No. 2, October 1974. An internally developed asset may be capitalized on the balance sheet once in development
stage, but this rarely occurs in practice. Furthermore, firms have an incentive to not capitalize these assets, since
expensing them lowers taxes.
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“separately identifiable,” such as a patent, copyright, or client list, then the asset is booked at

its fair market value in Other Intangible Assets. If the asset is not separately identifiable, such

as human capital or non-patented knowledge, then the asset appears as part of Goodwill on the

balance sheet. In both cases, the firm is required to amortize or impair the intangible asset over

time.

We define the firm’s total stock of intangible capital, denoted Intan, to be the sum of its internally

developed and externally acquired intangible capital. We measure external intangible capital as

Intangible Assets from the balance sheet (Compustat item intan). We set this value to zero if

missing. We keep Goodwill in Intangible Assets in our main analysis, because Goodwill does include

the fair cost of acquiring certain important intangible assets. Since Goodwill may be contaminated

by non-intangibles, such as a market premium for physical assets, we later exclude Goodwill from

external intangibles and show that our conclusions are robust. Our mean (median) firm acquires

only 19% (3%) of its intangible capital externally, but there are a few firms that acquire a large

fraction externally. For example, 35% of Google’s intangible capital in 2013 had been externally

acquired.9

Measuring the stock of internally developed intangible capital is difficult, since it appears nowhere

on the balance sheet. Fortunately, we can construct a proxy by accumulating past intangible

investments, as reported on firms’ income statements. While more accurate proxies for intangible

capital may be available for small subsets of firms, our measure has the virtue of being easily

computed for the full Compustat sample. The stock of internal intangible capital is the sum of its

knowledge capital and organizational capital, which we define next.

A firm develops knowledge capital by spending on R&D. We accumulate past R&D outlays using

the perpetual inventory method:

Git = (1− δR&D)Git−1 +R&Dit, (3)

9Google in 2013 had $18B in (externally acquired) balance sheet intangibles and an estimated $32B of internally
created intangible capital. For comparison, Google’s PP&E was $24B, its total assets were $111B, but $73B of these
were current assets including cash.

8



where Git is the end-of-period stock of knowledge capital, δR&D is its depreciation rate, and R&Dit

is real expenditures on R&D during the year. For δR&D, we use the Bureau of Economic Analysis’s

(BEA) industry-specific R&D depreciation rates, which range from 10% in the pharmaceutical

industry to 40% for computers and peripheral equipment.10 We use Compustat data back to 1950

to compute (3), but our regressions only include observations starting in 1975. Starting in 1977,

we set R&D to zero when missing, following Lev and Radhakrishnan (2005) and others.11

Next, we measure the stock of organizational capital by accumulating a fraction of past SG&A

expenses using the perpetual inventory method as in equation (3). Eisfeldt and Papanikolaou (2013,

2014) use a similar approach. The logic is that at least part of SG&A spending represents invest-

ments in organizational capital through advertising, spending on distribution systems, employee

training, and payments to strategy consultants. Eisfeldt and Papanikoloau (2012, 2013) use 10-K

filings, survey evidence, and firm characteristics to provide detailed support for treating SG&A

spending as investment. We follow Hulten and Hao (2008), Eisfeldt and Papanikoloau (2014), and

Zhang (2014) in counting only 30% of SG&A spending as investments in intangible capital. We

interpret the remaining 70% as operating costs that support the current period’s profits. Section 7

shows that our conclusions are robust to using values other than 30%, including a value estimated

from the data. We follow Falato, Kadryzhanova, and Sim (2013) in using a depreciation rate of

δSG&A = 0.20, and in Section 7 we show that our conclusions are robust to alternate depreciation

rates. We replace missing values of SG&A with zeros.12

One challenge in applying the perpetual inventory method in (3) is choosing a value for Gi0, the

capital stock in the firm’s first non-missing Compustat record, which often coincides with the IPO.

10The BEA began capitalizing R&D in satellite accounts in 1994, and in core NIPA accounts in 2013. The BEA’s
R&D depreciation rates are from the analysis of Li (2012), which draws on several existing academic studies. Following
the BEA’s guidance, we use a depreciation rate of 15% for industries not in Li’s Table 4. Our results are virtually
unchanged if we apply a 15% depreciation rate, the value used by Falato, Kadryzhanova, and Sim (2013), to all
industries.

11We start in 1977 to give firms two years to comply with the 1975 R&D reporting requirement. If we see a firm
with R&D equal to zero or missing in 1977, we assume the firm was typically not an R&D spender before 1977, so
we set any missing R&D values before 1977 to zero. Otherwise, before 1977 we interpolate between the most recent
non-missing R&D values. Starting in 1977, we make exceptions in cases where the firm’s assets are also missing.
These are likely years when the firm was privately owned. In such cases, we interpolate R&D values using the nearest
non-missing values.

12As for R&D, we make exceptions in years when the firm’s assets are also missing. For these years we interpolate
SG&A using the nearest non-missing values.
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We estimate Gi0 using data on firms’ founding years, R&D spending in the first Compustat record,

and average pre-IPO R&D growth rates. With those data, we can estimate each firm’s R&D and

SG&A spending in each year between the founding and appearance in Compustat. We apply a

similar approach to SG&A. Appendix A provides additional details. Section 7 shows that a simpler

measure assuming Gi0 = 0 produces an even stronger investment-q relation than our main measure.

That simpler measure is also reasonable proxy for investment opportunities.

Our measure of total investment includes investments in both physical and intangible capital.

Specifically, we define the total investment rate as

ιtot =
CAPEX +R&D + 0.3 × SG&A

PP&E + Intan
. (4)

This definition assumes 30% of SG&A represents an investment, as we assume in estimating capital

stocks. Following Erickson andWhited (2012) and many others, we measure the physical investment

rate as ιphy = CAPEX/PP&E. The correlation between ιtot and ιphy is 0.87.

In Section 7 we show that our conclusions are robust to several alternate ways of measuring

intangible capital and physical q.

1.3 Cash Flow

Erickson and Whited (2012) and others define cash flow as

cphy =
IB +DP

PP&E
, (5)

where IB is income before extraordinary items and DP is depreciation expense. This is the pre-

depreciation free cash flow available for physical investment or distribution to shareholders.

One shortcoming of cphy is that it treats R&D and SG&A as expenses, not investments. For

that reason, we call cphy the physical cash flow. In addition to cphy, we use an alternate cash flow

measure that recognizes R&D and part of SG&A as investments. Specifically, we add intangible
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investments back into the free cash flow, less the tax benefit of the expense:

ctot =
IB +DP + (R&D + 0.3 × SG&A)(1− κ)

PP&E + Intan
(6)

where κ is the marginal tax rate.13 When available, we use simulated marginal tax rates from

Graham (1996). Otherwise, we assume a marginal tax rate of 30%, which is close to the mean tax

rate in the sample. The correlation between ctot and cphy is 0.75.

1.4 Summary Statistics

Table 1 contains summary statistics. We compute the intangible intensity as a firm’s ratio of

intangible to total capital. The mean (median) intangible intensity is 44% (46%), indicating that

intangible capital makes up almost half of firms’ total capital. Knowledge capital makes up only

18% of intangible capital on average, so organizational capital makes up 82%. The median firm has

no knowledge capital, since the typical firm does not report any R&D expenditure. The average qtot

is mechanically smaller than qphy, since the denominator is larger. There is less dispersion in qtot

than qphy even if we scale the standard deviations by their respective means. Both q proxies exhibit

significant skewness, which will be a requirement of the cumulant estimator we apply in Section

3. Total investment exceeds physical investment on average, meaning one typically underestimates

firms’ investment rates by ignoring intangible capital. This result is not mechanical, since ιtot adds

intangibles to both the numerator and denominator.

Figure 1 plots the time-series of average intangible intensity. We see that intangible capital is

increasingly important: the intensity increases from 40% in 1975 to 48% in 2010. As expected,

high-tech and health-care firms are heavy users of intangible capital, while manufacturing firms use

less.14 Somewhat surprisingly, even manufacturing firms have considerable amounts of intangible

capital; their intangible intensity in 2010 is 31%, down from 34% in 1975.

13Since accounting rules allow firms to expense intangible investments, the effective cost of a dollar of intangible
capital is only (1− κ).

14We use the Fama-French five-industry definition. Details are in Section 4.
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2 OLS Results

Table 2 contains results from OLS panel regressions of investment on q, cash flow, and firm and year

fixed effects. The dependent variables in Panels A and B are, respectively, the total and physical

investment rates, ιtot and ιphy. While the estimated slopes suffer from measurement-error bias, the

R2 values help judge how well our q measures proxy for investment opportunities. We focus on

R2 in this section and interpret the coefficients on q after correcting for bias in the next section.

To help compare R2 across specifications, we include the R2 values’ bootstrapped standard errors

clustered by firm in parentheses.

Most papers in the literature regress ιphy on qphy, as in column 2 of Panel B. That specification

delivers an R2 of 0.233, whereas a regression of ιtot on qtot (Panel A column 1) produces an R2

of 0.319, higher by 0.086 or 37%. In other words, total q explains total investment better than

physical q explains physical investment. We are not aware of a formal statistical test for comparing

R2 values when the dependent variable differs, but the 0.086 increase we find is much larger than

the 0.005 standard errors for the individual R2 values. Including intangibles produces a higher R2

for two reasons. First, comparing columns 1 and 2, we see that qtot is better than qphy at explaining

both total investment (panel A) and physical investment (panel B). More importantly, R2 values

are uniformly larger in panel A than panel B, indicating that total investment rates are better

explained by all q variables, including qtot. One reason is that total investment is smoother over

time than physical investment, largely because CAPX is lumpy compared to SG&A and R&D.15

When we run a horse race between total and physical q in column 3 of Panel A, the sign on

qphy flips to negative and becomes less statistically significant, implying that physical q contains

little additional information about total investment opportunities once we account for qtot. When

we run that same horse race using physical investment (column 3 of Panel B), we see that both

q variables enter with high significance, meaning total q contains additional information about

physical investment opportunities beyond the information in qphy.

Columns 4–6 repeat the same specifications while controlling for cash flow. The patterns in R2

are similar. For example, the specification with physical capital (column 5 of panel B) produces an

15The within-firm volatility of physical (total) investment is 20.2% (15.4%)
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R2 of 0.238, whereas the specification with total capital (column 4 of panel A) delivers an R2 of

0.368, 55% higher.

Taken together, these results imply that total q is a better proxy for total investment opportunities

than physical q is. Total q is even a slightly better proxy for physical investment opportunities,

although physical q still contains additional information.

3 Bias-Corrected Results

We argue that total q is a better proxy for true q than physical q is. However, we recognize that

total q is still a noisy proxy, so all the OLS slopes in the previous section suffer from measurement-

error bias. We now estimate the previous models while correcting this bias. We do so using

Erickson, Jiang, and Whited’s (2013) higher-order cumulant estimator, which supercedes Erickson

and Whited’s (2002) higher-order moment estimator.16 The cumulant estimator provides unbiased

estimates of β in the following errors-in-variables model:

ιit = ai + qitβ + zitα+ uit (7)

pit = γ + qit + εit, (8)

where qit is the true, unobservable q, p is a noisy proxy for q, and z is a vector of perfectly measured

control variables.17 In addition to delivering unbiased slopes, the estimator also produces two useful

test statistics. The first, ρ2, is the hypothetical R2 from (7). Loosely speaking, ρ2 tells us how

well true, unobservable q explains investment, with ρ2 = 1 implying a perfect relation. The second

statistic, τ2, is the hypothetical R2 from (8). It tells us how well our q proxy explains true q, with

τ2 = 1 implying a perfect proxy. The closer τ2 is to one, the smaller is the gap between the OLS

16Cumulants are polynomials of moments. The estimator is a GMM estimator with moments equal to higher-order
cumulants of investment and q. Compared to Erickson and Whited’s (2002) estimator, the cumulant estimator has
better finite-sample properties and a closed-form solution, which makes numerical implementation easier and more
reliable. The estimator can be either exactly identified (using 3rd-order moments) or over-identified (using 4th-order
moments and higher). We use the exactly identified version, as we find the over-identified version is sensitive to small
changes in our analysis, potentially because fourth-order moments are quite noisy. Results using the over-identified
estimator are available upon request.

17The cumulant estimator’s main identifying assumptions are that u and ε are independent of q, z, and each other;
and that p has non-zero skewness.
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and bias-corrected slope, and the smaller is the gap between the OLS R2 and cumulant ρ2.

For comparison, we also show results using the IV estimators advocated by Almeida, Campello

and Galvao (2010). These estimators use lagged regressors as instruments for the noisy q proxy.18

Erickson and Whited (2012) show that the IV estimators are biased if measurement error is serially

correlated, which is likely in our setting. This bias is probably most severe in the usual regressions

that omit intangible capital: Omitted intangible capital is an important source of measurement er-

ror, and a firm’s intangible capital stock is highly serially correlated. Since the cumulant estimators

are robust to serially correlated measurement error, we prefer them over the IV estimators.

Estimation results are in Table 3. All specifications include firm and year fixed effects. Columns

1–4 show results from a different estimator, with OLS results in column on for comparison. The

second column show results using the cumulant estimator. Columns three and four use the IV

estimators. Columns 5–8 are like columns 1–4 but control for cash flow. Panel A shows results

using total capital (ιtot, qtot, and ctot). Panel B shows results using physical capital (ιphy, qphy, and

cphy).

The τ2 estimates are higher in panel A than panel B, indicating that total q is a better proxy for

the true, unobservable q than is physical q. For example, comparing column 2 of Panels A and B, τ2

increases from 0.492 to 0.588, a 20% increase. We are not aware of a statistical test for comparing

τ2 values, but this 0.096 increase in τ2 is considerably larger than their individual bootstrapped

standard errors, 0.007 and 0.010. Despite the improvement, total q is still a noisy proxy for true

q: the 0.588 value of τ2 implies that total q explains only 58.8% of the variation in true q. The

improvements in τ2 are smaller, roughly 9%, when we control for cash flow in columns 5–8.

The ρ2 estimates are also higher in Panel A than Panel B, indicating that the unobservable true

q explains more of the variation in total investment than it does for physical investment. In other

words, the relation between q and investment is stronger when we include intangible capital in both

q and investment. The increase in ρ2 from including intangible capital is 0.056 (15%) without cash

18Both IV estimators start by taking first differences of a linear investment-q model. Biorn’s (2000) IV estimator
assumes the measurement error in q follows a moving-average process up to some finite order, and it uses lagged
values of the regressors as instruments to “clear” the memory in the measurement error process. Arellano and Bond’s
(1991) GMM IV estimator use twice-lagged q and investment as instruments for the first-differenced equation, and
weights these instruments optimally using GMM.
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flow, 0.111 (30%) with cash flow. Both increases are large relative to the standard errors for ρ2.

The ρ2 estimates in Panel A, 0.428 and 0.482, indicate that q explains 43–48% of the variation

in investment. These result helps us evaluate how the simplest linear investment-q theory fits the

data. The theory explains almost half of the variation in investment, so there is still considerable

variation left unexplained. Judging by the higher ρ2 values in panel A, the simple benchmark

theory fits the data considerably better when one includes intangible capital in investment and q.

Next, we discuss the bias-corrected slopes on q. Comparing panels A and B, we see much larger

slopes on total q than physical q for every estimator used. The increase in coefficient from Panel

B to Panel A ranges from 127–189%. Interpreting these slopes is difficult. Taken literally, the

simplest q theories, including the one we present in Section 6, predict that the inverse of the q-

slope determines the marginal capital adjustment cost.19 Whited (1994) and Erickson and Whited

(2000) explain, though, that is impossible to obtain meaningful adjustment-cost estimates from the

investment-q slopes, even within the quadratic adjustment-cost framework. The main problem is

that our regression corresponds to a large class of investment cost functions, so there is no hope of

identifying average adjustment costs without strong, arbitrary assumptions on the cost function.

Another problem is that marginal adjustment cost has a one-to-one mapping with marginal q and is

therefore independent of the investment-q slope. If one moves beyond the classic, simple, quadratic

framework we describe in Section 6, it becomes even harder to interpret our slopes on q (Gala and

Gomes, 2013). We simply interpret our q-slopes as determinants of the elasticity of investment

with respect to q, and we note that including intangible capital makes the slopes much larger.

Finally, we discuss the estimated slope coefficients on cash flow. The simplest q theories predict a

zero slope, since q should completely explain investment. The data strongly reject this prediction:

We find significantly positive slopes on cash flow in all columns and both panels. Comparing panels

A and B, we find that the slopes on cash flow are 6–10 times larger when we include intangible

capital. This result makes sense. Recall that we add back intangible investment to move from cphy

to ctot. As a result, when intangible investment is high, ctot also tends to be high, creating a stronger

overall investment-cash flow relation. We emphasize that this difference is the result of having a

19Hayashi (1982) also makes make this prediction. which follows from three key assumptions: perfect competition,
constant returns to scale, and quadratic capital adjustment costs.
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more economically sensible measure of investment and hence free cash flow. In other words, we

argue that previous studies that only include physical capital have found slopes on cash flow that

are too small, because they fail to classify the resources that go toward intangible capital as free

cash flow available for investment. To summarize, judging by the cash-flow slopes, the simplest

q theories fit the data worse when we include intangible capital. This result does not necessarily

spell bad news for more recent, general theories of q and investment, which have shown that non-

zero slopes on cash flow may arise from many sources. For example, Gomes (2001), Hennessy

and Whited (2007), and Abel and Eberly (2011) develop models predicting significant cash-flow

slopes even in the absence of financial constraints. Our results indicate that these cash-flow slopes

are almost an order of magnitude larger than previously believed, once we account for intangible

capital.

4 Where and When Does Intangible Capital Matter Most?

So far we have pooled together all observations. Next, we compare results across firms and years.

Doing so allows us to check the robustness of our main results across subsamples, and also lets us

judge where and when intangible capital matters most.

We re-estimate the previous models in subsamples formed using three variables. First, we sort

firms each year into quartile subsamples based on their ratio of intangible to total capital (Table 4).

Second, we form industry subsamples (Table 5). We use Fama and French’s five-industry definition

to avoid small subsamples in our cumulants analysis. After dropping “Other,” the four industries

are manufacturing, consumer, high-tech, and health.20 Third, we examine the early (1972–1995)

and late (1996–2010) parts of our sample (Table 6). For each subsample we estimate a total-capital

specification using ιtot, qtot, and ctot. The adjacent column presents a physical-capital specification

using ιphy, qphy, and cphy. We tabulate the difference in R2, ρ2, and τ2 between the physical-

and total-capital specifications. To help judge whether these differences are significant, we report

bootstrapped standard errors clustered by firm for R2, ρ2, and τ2. The top panels include just q,

20Manufacturing includes manufacturing and energy firms (we drop utility firms). Consumer includes consumer
durables, nondurables, wholesale, retail, and some services. High tech includes business equipment, telephone, and
television transmission. Health includes healthcare, medical equipment, and drugs.
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whereas the bottom panels add cash flow as a regressor.

First we discuss the OLS R2 values. Our main result is quite robust: Using total capital rather

than physical capital produces higher R2 values in all ten subsamples. The increase in R2 ranges

from 0.047–0.222, or from 26–73%. This result implies that total q is a better proxy for investment

opportunities in every subsample.

Including intangible capital is more important in certain types of firms and years. As expected,

it is more important in firms with more intangible capital: the increase in R2 is 0.176 (58%) in

the highest intangible quartile, compared to 0.047 (26%) in the lowest quartile. We are not aware

of a formal statistical test for this difference in difference in R2 values. We can say, though, that

the 0.129 (=0.176-0.047) diff-in-diff is large relative to the individual standard errors, which range

from 0.009 to 0.013.

Including intangible capital increases the R2 by 0.060 in the manufacturing industry, 0.093 in

the consumer industry, 0.085 in the health industry, and 0.108 in the high-tech industry. These

increases roughly line up with the industries’ use of intangible capital. For example, 57% of the

tech industry’s capital is intangible, on average, compared to 32% in the manufacturing industry.

Nevertheless, we emphasize that even manufacturing firms have considerable amounts of intangible

capital and see a stronger investment-q relation when we include intangible capital.

We see mixed results for the year subsamples. Without controlling for cash flow, the increase in

R2 is slightly higher in the later subsample, whereas controlling for cash flow in panel B delivers

the opposite result. The former result makes more sense, as there is more intangible capital in the

later period (Figure 1).

Next we discuss results from the cumulant estimator. Our key results are largely robust across

subsamples and specifications. Including intangible capital produces higher values of ρ2 and larger

slopes on q and cash flow in nine out of ten subsamples.21

Including intangible capital produces a higher τ2 in subsamples with more intangible capital. This

result implies that total q is a better proxy for true q in firms and years with the most intangible

capital, as expected. Some of these improvements are dramatic. For example, τ2 increases by 0.209

21The value of ρ2 and the cash-flow slope are slightly lower in the health industry, but these differences do not
appear to be statistically significant.
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(48%) in the quartile with the most intangible capital, by 0.129 (35%) in the health industry, by

0.133 (26%) in the tech industry, and by 0.118 (25%) in the later period. Including intangible capital

produces a lower τ2, however, in subsamples with less intangible capital, such as the manufacturing

industry. Some of these decreases appear to be statistically insignificant. To the extent that they are

significant, physical q is a better proxy for true q in firms and years with less intangible capital. One

potential explanation is that the noise in our intangible-capital measure swamps any improvement

from including it in contexts where intangible capital is close to zero. Recall, though, that including

intangibles produces a higher R2 value in all ten subsamples. If the goal is to produce a good proxy

for investment opportunities– and not just a proxy for true q– then including intangible capital

produces improvements in all subsamples.

To summarize, our main result– that including intangible capital results in a stronger investment-q

relation– is consistent across firms with high and low amounts of intangible capital, in the early and

late parts of our sample, and across industries. On some dimensions (R2, for example), including

intangible capital produces a stronger investment-q relation especially in years and firms where

intangible capital is more important.

5 Macro Results

One might expect q theory to work better in aggregate macroeconomic data than firm-level data,

since firm-level investment is lumpy over time. So far we have analyzed firm-level data. Next

we investigate the investment-q relation in U.S. macro time-series data. Our sample includes 142

quarterly observations from 1972Q2–2007Q2, the longest period for which all variables are available.

We construct versions of physical and total investment and q using macro data. Physical q and

investment come from Hall (2001), who uses the Flow of Funds and aggregate stock and bond

market data. Physical q, again denoted qphy, is the ratio of the value of ownership claims on

the firm less the book value of inventories to the reproduction cost of plant and equipment. The

physical investment rate, again denoted ιphy, equals private nonresidential fixed investment scaled

by its corresponding stock, both of which are from the Bureau of Economic Analysis.
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Data on the aggregate stock and flow of physical and intangible capital come from Carol Corrado

and are discussed in Corrado and Hulten (2014). Earlier versions of these data are used by Corrado,

Hulten, and Sichel (2009) and Corrado and Hulten (2010). Their measures of intangible capital

include aggregate spending on business investment in computerized information (from NIPA), R&D

(from the NSF and Census Bureau), and “economic competencies,” which includes investments in

brand names, employer-provided worker training, and other items (various sources). Similar to

before, we measure the total capital stock as the sum of the physical and intangible capital stocks,

we compute total q as the ratio of total ownership claims on firm value, less the book value of

inventories, to the total capital stock, and we compute the total investment rate as the sum of

intangible and physical investment to the total capital stock.

To mitigate problems from potentially differing data coverage, we use Corrado and Hulten’s (2014)

ratio of physical to total capital to adjust Hall’s (2001) measures of physical q and investment. More

precisely, we calculate total q as

qtot =
V

Kphy +Kintan
= qphy ×

Kphy

Kphy +Kintan
(9)

and total investment as

ιtot =
Iphy + Iintan

Kphy +Kintan
= ιphy ×

Kphy

Kphy +Kintan
×

Iphy + Iintan

Iphy
. (10)

where qphy and ιphy are from Hall’s (2001) data andKphy, Kintan, Iphy, and Iintan are from Corrado

and Hulten’s (2014) data.

The correlation between physical and total q is extremely high, at 0.997. The reason is that total

q equals physical q times the ratio of physical to total capital [equation (9)], and the latter ratio has

changed slowly and consistently over time.22 Of significantly larger importance is the change from

physical to total investment, which requires changing both the numerator and the denominator in

(10). Since the ratio of capital flows has changed more than the ratio of the capital stocks, the

22The macro intangible intensity increases from roughly 0.2 in 1975 to 0.3 in 2010. In contrast, Figure 1 shows the
cross-sectional average intensity increasing from roughly 0.27 to 0.47 over this period. We can reconcile these facts if
small firms use more intangible capital.
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correlation between total and physical investment is much smaller, 0.43.

For comparison, we also use Philippon’s (2009) aggregate bond q, which he obtains by applying a

structural model to data on bond maturities and yields. Bond q is available at the macro level but

not at the firm level. Philippon (2009) shows that bond q explains more of the aggregate variation

in what we call physical investment than does physical q. Bond q data are from Philippon’s web

site.

Figure 2 plots the time series of aggregate investment and q using physical capital (left panel)

and total capital (right panel). Except in a few subperiods, physical q is a relatively poor predictor

of physical investment, as Philippon (2009) and others have shown. Total q seems to do a much

better job of predicting total investment, although the fit is not perfect. The total investment-q

relation is particularly strong during the tech boom of the late 1990’s, and is particularly weak

during the early period, 1975-85. As explained above, the improvement in fit comes mainly from

changing the investment measure, since total and physical q are almost perfectly correlated in the

time series.

Table 7 presents results from time-series regressions of investment on q. The top panel uses total

investment as the dependent variable, and the bottom panel uses physical investment. The first

two columns show dramatically higher R2 values and slope coefficients in the top panel compared

to the bottom. The result is similar for both total and physical q (columns 1 and 2), as expected.

This result implies a much stronger investment-q relation when we include intangible capital in our

investment measure. The 0.57 increase in R2 from including intangible capital is even larger than

the 0.43 increase Philippon (2009) obtains by using bond q in place of physical q (columns 2 vs. 3

in panel B).

Interestingly, the R2 values in panel A indicate that both total and physical q explain more

than three times as much variation in total investment than does bond q, which does not enter

significantly either on its own (column 3) or in horse races with total or physical q (columns 4 and

5). (We do not run a horse race between total and physical q since they are almost collinear.)

We obtain the opposite result when the dependent variable is physical investment: bond q explains

much more of the variation in physical investment and is the only q variable that enters significantly.
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Why is bond q better at explaining physical investment but worse at explaining total investment?

One potential explanation is that bond prices are less sensitive to growth opportunities than eq-

uity prices are, and intangible investment is highly sensitive to growth opportunities. Also, firms

with more intangible investment typically hold less debt, so they contribute relatively little to the

aggregate bond q measure.23

We re-estimate the regressions in first differences and, to handle seasonality, in four-quarter

differences. Results are available upon request. Echoing our results above, regressions of investment

on both total and physical q generate larger slopes and R2 values when we use total rather than

physical investment. The relation between physical investment and either q variable is statistically

insignificant in first differences, whereas the relation between total investment and either q is always

significant. In all these specifications in differences, bond q enters with much higher statistical

significance, drives out total and physical q in horse races, and generates higher R2 values.

To summarize, in macro time-series data we find a much stronger investment-q relation when we

include intangible capital in our measure of investment. The increase in R2 is even larger than the

one Philippon (2009) finds when using bond q in place of physical q. While total q is better than

bond q at explaining the level of total investment, bond q is better at explaining first differences,

and bond q is also better at explaining the level of physical investment.

6 A Theory of Intangible Capital, Investment, and q

In this section we present a theory of optimal investment in physical and intangible capital. Our

first goal is to provide a rationale for the empirical choices we have made so far. Specifically, we

provide a rationale for adding together physical and intangible capital in our measure of total q, and

we provide a rationale for regressing total investment on total q. More importantly, we illustrate

what can go wrong when one omits intangible capital and simply regresses physical investment

on physical q. The aim here is not to make a theoretical contribution,24 but to help explain our

23Firms with above-median intangible intensity have mean (median) leverage of 22.6% (18.3%), compared to 30.1%
(27.0%) for below-median firms. We measure leverage as Compustat items (dlc + dltt)/at.

24There are already many theories of investment and q, including theories featuring multiple capital goods. See,
for example, Wildasin (1984) and Hayashi and Inoue (1991).
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empirical results. We therefore provide a toy model in Section 6.1 in order to make the economic

mechanism as transparent as possible. Section 6.2 presents a slightly richer model and shows that

the main conclusions are robust. All proofs are in Appendix B.

6.1 Model with Perfect Substitutes and Analytical Predictions

We simplify and modify Abel and Eberly’s (1994) theory of investment under uncertainty to include

two capital goods. We interpret the two capital goods as physical and intangible capital, but they

are interchangeable within the model. The model features an infinitely lived, perfectly competitive

firm that holds K1t units of physical capital and K2t units of intangible capital at time t. (We

omit firm subscripts for notational ease. Parameters are constant across firms, but shocks and

endogenous variables can vary across firms unless otherwise noted.) Like Hall (2001), we assume

the two capital types are perfect substitutes, so what matters is total capital K ≡ K1 + K2 and

total investment I ≡ I1 + I2. A similar assumption is implicit in almost all empirical work on the

investment-q relation: by using data on CAPEX or PP&E, both of which add together different

types of physical capital, researchers have treated these different types of physical capital as perfect

substitutes. The next subsection relaxes the perfect-substitutes assumption.

At each instant t the firm chooses the investment levels I1t and I2t in two types of capital and

the amount of labor Lt that maximize firm value:

V (K, εt, p1t, p2t) = max
Lt+s, I1,t+s, I2,t+s

∫
∞

0
Et[F (Kt+s, Lt+s, εt+s)− wLt+s (11)

−
γ

2
Kt+s

(
It+s

Kt+s

)2

− p1,t+sI1,t+s − p2,t+sI2,t+s]e
−rsds

subject to

dKi = (Ii − δKi) dt, i = 1, 2 (12)

I1, I2 ≥ 0. (13)

We assume the production function F is linearly homogenous in K and L, and also depends on
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a shock ε. The wage w is constant. Equation (11) assumes the firm faces quadratic capital

adjustment costs with parameter γ. Capital prices p1 and p2, along with profitability shock ε,

fluctuate over time according to a general stochastic diffusion process

dxt = µ (xt) dt+Σ(xt) dBt, (14)

where xt = [εt p1t p2t]
′ . All firms face the same capital prices p1t and p2t, but the shock εt can

vary across firms. We assume parameter values are such that I > 0 always.25

The two capital types are perfect substitutes in production, capital adjustment costs, and depreci-

ation. The only potential difference between them is their prices p1 and p2. We assume non-negative

investment in (13), because otherwise the firm would optimally (yet unrealistically) take massive

long-short positions. For example, if p1 > p2, the firm could sell its entire K1 and buy an equal

amount of K2, thereby booking a profit without incurring any adjustment costs, since total invest-

ment I = 0.26 Since I1, I2 ≥ 0, the firm will invest zero in the capital type with the higher price.

For example, if p1 > p2, then I1 = 0 and I = I2.

Next we present our three main predictions. The first two are admittedly close to the model’s

assumptions, the third less so.

Prediction 1: Marginal q equals average q, the ratio of firm value to the total capital stock:

∂Vt

∂K
=

Vt

K1t +K2t
≡ qtot (εt, p1t, p2t) . (15)

This result provides a rationale for measuring q as firm value divided by the sum of physical and

intangible capital, which we call total q. The value of qtot depends on the shock ε and the two capital

prices, p1 and p2. Marginal q, ∂Vt/∂K, measures the benefit of adding an incremental unit of capital

(either tangible or intangible) to the firm. Marginal q is not observed by the econometrician in

many investment theories, making the theories difficult to estimate. Since our firm faces constant

returns and perfect competition, as in Hayashi (1982) and others, marginal q equals the easily

25Equivalently, we assume parameter values are such that qtot > min (p1, p2) in all periods.
26Our main predictions still hold if we relax the non-negative investment constraint and introduce separate capital

adjustment costs proportional to I21 and I22 .
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observed average q.

The firm chooses the optimal total investment rate by equating marginal q and the marginal cost

of investment. Applying this condition to (11) yields our next main prediction.

Prediction 2: The total investment rate ιtot is linear in qtot and the minimum capital price:

ιtott ≡
I1t + I2t
K1t +K2t

=
1

γ
qtott −

min (p1t, p2t)

γ
. (16)

If prices p1t and p2t are constant across firms i at each t, then the OLS panel regression

ιtotit = at + βqtotit + ηit (17)

will produce an R2 of 100% and a slope coefficient β equal to 1/γ.

This result provides a rationale for regressing total investment on total q, as we do in our empirical

analysis. The time fixed effects at are needed to soak up the time-varying capital prices p in (16).

Assuming no measurement error, the result also tells us that the OLS slope β is an unbiased esti-

mator of the inverse adjustment cost parameter γ. As discussed earlier, we avoid making inferences

about adjustment costs from our estimated q-slopes. The main reason, as Whited (1994) explains,

is that there is a large class of adjustment cost functions that correspond to regression (17). We

obtain the mapping above between β and γ thanks to strong simplifying assumptions about the

adjustment cost function.

We now use the theory to analyze the typical regression in the literature, which is a regression

of physical investment (I1/K1 in the model) on physical q (V/K1 in the model). Our next result

shows how omitting intangible capital from these regressions results in a lower R2 and biased slope

coefficients.

Prediction 3: The physical investment rate equals

ιphyit ≡
I1,i,t
K1,i,t

=





0

1
γ
qphyit − p∗t

Kit

K1,i,t

if p1 > p2,

if p1 ≤ p2.
. (18)
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If prices and p1 and p2 are each constant across firms at each instant, then the OLS panel regression

ιphyit = ãt + β̃qphyit + η̃it (19)

will produce an R2 less than 100% and a slope β̃ that is biased away from 1/γ.

Equation (18) follows from multiplying both sides of equation (16) by Kit/K1,i,t and recalling

that the firm only buys the cheaper capital type. There are two reasons why the R2 will be less

than 100% in regression (19). First, in periods when p1 > p2, all firms’ physical investment will

equal zero, yet there will still be cross-sectional variation in qphy and hence non-zero regression

disturbances η̃it. Second, even in periods when p1 < p2, the time fixed effects ãt will not perfectly

absorb the term
p∗t
γ

Kit

K1,i,t
in equation (19), becauseKit/K1,i,t is not necessarily constant across firms.

As a result, we again have non-zero disturbances and hence an R2 less than 100%.

OLS estimates of β̃ are biased if the disturbance η̃it is cross-sectionally correlated with the re-

gressor qphyit .27 Equation (18) implies that the error term in regression (19) equals

η̃it =





−ãt − β̃qphyit

−
p∗t
γ

(
Kit

K1,i,t
−

Kt

K1,t

)
if p1 > p2,

if p1 ≤ p2.
. (20)

If β̃ > 0, as we find in the data, then the cross-sectional correlation between η̃it and qphyit equals

-1 when p1 > p2. This negative correlation contribues to downward bias in OLS estimates of β̃.

When p1 < p2 , the disturbance is again cross-sectionally correlated with qphyit through the term

Kit/K1,i,t in (20), because qphyit = qtotit Kit/K1,i,t. Since Kit/K1,i,t appears in both qphyit and η̃it, albeit

with a negative coefficient in η̃it, it is likely that the regressor and disturbance are again negatively

correlated, biasing the regression slope β̃ downward.28 Downward bias in β̃ implies upward bias in

γ, meaning regression (19) typically over-estimates the adjustment-cost parameter γ.

27The regression with time fixed effects is equivalent to demeaning ιphyit and qphyit by their cross-sectional means and
then regressing the demeaned variables on each other without time fixed effects. It is therefore the cross-sectional
correlation between qphyit and η̃it that matters for determining bias. We assume here that all variables are measured
without error. Measurement error would contribute even more bias to the OLS regression.

28We cannot prove that this second correlation is negative, because qtotit is not avaiable in closed form and may be
correlated with Kit/K1,i,t. However, we solve the model numerically and find that, for reasonable parameter values,
there is a nearly perfect negative cross-sectional correlation between and qphyit and η̃it when p1 ≤ p2.
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How large are these biases? Appendix C describes a simple simulation of the model. Results are

in Panel A of Table 8. As expected, a regression of the total investment rate on qtot (equation 17)

delivers a 100% R2 and an average slope equal to 1/γ. A regression of the physical investment rate

on qphy (equation 19) delivers an average R2 of only 49% and an average slope that is 51% lower

than 1/γ, consistent with the predicted downward bias in β̃. Given the model’s simplicity, we do

not push the quantitative features of our theory, but simply note that the magnitudes could be

large.

To summarize, our simple theory predicts, not surprisingly, that total q is the best proxy for

total investment opportunities. Less obviously, physical q is a relatively noisy proxy for physical

investment opportunities. These predictions help explain why our empirical regressions produce

higher R2 and τ2 values when we use total rather than physical capital. The theory also predicts

that a regression of physical investment on physical q will produce downward-biased slopes on q

and hence upward-biased estimates of the adjustment-cost parameter. This result helps explain

why we typically find smaller estimated slopes on q when using physical capital alone in our actual

regressions.

6.2 A Model with Imperfect Substitutes

The assumption that physical and intangible capital are perfect substitutes helps generate the

closed-form predictions above, but it is probably unrealistic. We now relax this assumption

by replacing the linear capital aggregator K = K1 + K2 with the nonlinear capital aggregator

φ (K1,K2) = Kρ
1K

1−ρ
2 in equation (11). To simplify the numerical solution, we also switch from

continuous to discrete time. Otherwise, the model is the same as before. The setup now resembles

that of Hayashi and Inoue (1991). We numerically solve and simulate this nonlinear model with

ρ = 0.5. We then measure ιtot, ιphy, qtot, and qphy applying the same definitions as above to the new

simulated data. Finally, we run the same regressions as above. This exercise essentially assumes

the world is nonlinear, but asks what happens if the econometrician were to simply add together

the two capital types as if they were perfect substitutes, as we do in our empirical analysis.

Simulation results for the nonlinear model are in Panel B of Table 8. As in the simpler linear
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model– and also in our empirical results–, in the nonlinear model we find a higher R2 (41% versus

1%) using total rather than physical capital. Both R2 values in Panel B are lower than their

counterparts from the linear model in Panel A. This result is expected, since we are applying

simple linear measures to a nonlinear world. However, the 41% R2 using total capital is still quite

high, and it is similar to the R2 values we find in our empirical analysis using total capital. This

result suggests that our empirical measures that simply add together the two capital stocks may

not be a bad approximation if the real world is nonlinear. In panel B we also see that the q-

slopes are much lower in than in panel A. There is no reason these slopes should equal 1/γ in the

nonlinear model, so we do not quantify the bias as we do in Panel A. The slope using total capital

is 15% larger than the slope using physical capital, consistent with the larger slopes we find in our

empirical analysis when we use total capital.

7 Robustness

This section shows that our main empirical conclusions are robust to several alternate ways of

measuring intangible capital and physical q.

7.1 What Fraction of SG&A Is An Investment?

Arguably the strongest assumption in our intangible-capital measure is that λ=30% of SG&A

represents an investment and the rest is an operating expense. Table 9 shows that our main

conclusions are robust to using different values of λ ranging from zero to 100%. When λ is zero,

firms’ intangible capital comes exclusively from R&D. No matter what λ value we assume, we find

that including intangible capital produces larger values of R2, τ2, and ρ2, as well as larger slopes

on q. The highest OLS R2 obtains for λ = 0.5. The highest ρ2 and τ2 values obtain when λ = 0.3.

Instead of assuming 30% of SG&A is investment, we can let the data tell us what the true value of

λ is. The structural parameter λ affects both the investment and q measures. We estimate λ along

with the q-slope and firm fixed effects by maximum likelihood. Details are available on request.

This estimation imposes two strong identifying assumptions: the simple linear investment-q model
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is true, and there is no measurement error in our data.29 The estimated λ values are 0.39 in the

consumer industry, 0.37 in the high-tech industry, and 0.33 in the health-care industry. All these

estimates are close to our assumed value of 0.3, which is comforting. However, we do not push these

λ estimates strongly, for three reasons. First, the investment-q relation is probably not the ideal

setting for identifying λ. Second, the assumption of a linear investment-q model is quite strong.

Finally, the λ estimate in the manufacturing industry is constrained at 1.0, which is implausibly

large and likely a symptom of the previous two issues. The take-away of this subsection, though,

is that our main conclusions hold regardless of the λ value we use.

7.2 Alternate Measures of Intangible Capital

In addition to varying the SG&A multiplier λ, we try eight other variations on our intangible capital

measure. Table 10 lists these variations and reports the results they produce. The table presents

the R2 from an OLS regression of investment on q, and it also presents the bias-corrected slope, τ2,

and ρ2 from the cumulant estimator. For comparison, the first two rows report our main results

with physical and total capital from Tables 2 and 3.

First, we show that our main conclusions are robust to the specific value of δSG&A, the depreciation

rate of organizational capital. The academic literature and BEA provide guidance on choosing

R&D depreciation rates, but there is much less guidance for choosing δSG&A. Our main results use

δSG&A=20% when applying the perpetual inventory method (row 2 of Table 10). When we use a

10% or 30% depreciation rate instead (rows three and four), we find a very similar OLS R2, ρ2, τ2,

and bias-corrected slope on q.

Row five contains results after excluding goodwill from firms’ intangible capital. Recall that

goodwill is a component of balance-sheet intangible capital, which is a firm’s externally acquired

intangible capital. On the one hand, we should include goodwill since it includes the value of

intangible assets that are not “separately identifiable.” On the other hand, goodwill may be

contaminated by market premia for externally acquired physical assets. We find that our main

results are almost identical when we exclude goodwill.

29It may be possible to incorporate measurement error into the structural estimation of λ. Doing so, however, is
outside this paper’s scope.
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Row six contains results after excluding all balance-sheet intangibles, including goodwill. There

is no good reason for this exclusion, but it makes our measure closer to existing measures from

the literature. The OLS R2, ρ2, and τ2 values are all slightly lower than in row two, which

implies that excluding balance-sheet intangibles produces a poorer proxy for q and firms’ investment

opportunities. The values are all higher than in row one, however, so our main conclusions about

the importance of including intangible capital still hold using this alternate measure.

Rows 7–9 nine address the challenge of estimating firms’ stock of intangible capital before their

first Compustat record, which usually coincides with their IPO. Our main analysis estimates firms’

starting intangible capital using data on their founding year, and by back-filling their R&D and

SG&A spending using age-specific average R&D and SG&A growth rates.

In row seven we take a much simpler approach, setting firms’ intangible capital to zero when

they first appear in Compustat. This simplification seems to produce an even better proxy for

investment opportunities and q. Compared to row two, row seven shows higher values of R2, ρ2,

and τ2. This result is surprising, since firms typically do own intangible capital before their IPOs.

One potential explanation is that our main measure’s back-filled values of R&D and SG&A are so

noisy that one is better off just setting them to zero. If researchers want a simpler but still effective

proxy for investment opportunities, this alternate measure is a reasonable choice.

Row eight estimates initial capital using the method of Falato, Kadryzhanova, and Sim (2013).

They take the R&D or SG&A spending from the firm’s first Compustat record, then assume the

firm has been alive and investing that same dollar amount forever before entering Compustat. As

a result, the initial stock of knowledge capital (for example) is R&Di1/δR&D , where R&Di1 is the

R&D amount in firm i’s first Compustat record.30 By assuming the firm has been alive forever,

this method tends to over-estimate firms’ initial capital stocks. Compared to row two, row eight

shows slightly lower values of R2, τ2, and ρ2, meaning this method produces slightly worse proxies

for firms’ investment opportunities and q. However, this method still produces values that are

well above those in row one, so our main conclusions about the importance of including intangible

capital still hold using this alternate measure.

30Eisfeldt and Papanikolaou (2013) use a modified approach that assumes the investment level has been growing
at some constant rate forever.
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In rows 9a and 9b, we use the same measures as in rows one and two, but we drop the first five

years of data for each firm. Doing so reduces the importance of the initial capital stock in the

perpetual inventory method. Eisfeldt and Papanikolaou (2013) perform a similar robustness check.

For both physical and total capital, the values of R2, ρ2, and τ2 are much lower in rows 9a and

9b than in rows one and two, implying a weaker investment-q relation for older firms. Our main

conclusion still holds, though, when we compare row 9a to 9b. Using total rather than physical

capital produces a stronger investment-q relation, as judged by R2, ρ2, τ2, and the q-slope.

R&D data are missing in 47% of our Compustat sample. Section 1 explains how we handle these

missing observations. For robustness, we compute intangible capital as in our main analysis, but

we drop firm/year observations with missing R&D from our regressions. Results using physical

and total capital are in rows 10a and 10b, respectively. The values of R2, ρ2, and τ2 are all higher

compared to rows one and two, implying a stronger investment-q relation in firms that report R&D

spending, even when we only measure physical capital. Our main conclusion still holds in this

subsample when we compare rows 10a and 10b: Using total rather than physical capital produces

a stronger investment-q relation, as judged by R2, ρ2, τ2, and the q-slope.

7.3 Alternate Measures of Physical Capital

There is no consensus in the literature on how to measure Tobin’s q. Our analysis so far uses the

physical q measure that is most popular in the investment-q literature, but the broader finance

literature uses a variety of measure. Next, we try some of these other definitions of physical q, and

we show that our total q and total investment measures outperform them all.

We survey the most recent issues of the Journal of Finance, Journal of Financial Economics, and

Review of Financial Studies to find papers that measure Tobin’s q. We find at least nine different

definitions in the January 2013 through July 2014 issues. None of these papers, nor any other papers

we have seen, includes a firm’s stock of internally generated intangible capital in the denominator of

q, as we do in our total q measure. Some papers, though, do include externally acquired intangibles,

perhaps inadvertently. They do so by setting the denominator of q to total assets, which includes

balance-sheet intangibles. Since external intangibles make up a small fraction of total intangibles
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(Section 1), these alternate definitions exclude most intangible capital. We therefore call these q

measures from the literature alternate proxies for physical q.

We re-estimate our main physical-capital specifications using the five most popular alternate

definitions we find for Tobin’s q. For each one, we redefine investment so that investment and q

share the same denominator. Results and detailed definitions are in Table 11, which has a similar

format as Table 10. Most of the alternate physical q measures produce a slope on q that is even

larger than the one generated by our total q measure. Since those alternate measures produce

worse model fit, and since it is hard in general to interpret the slopes on q, it is not clear what

to make of this result. The most important result in Table 10 is that including intangible capital

(row 1) generates a larger R2, τ2, and ρ2 value than in any of the physical-capital specifications

(rows 2–7). Even our main physical capital measure outperforms these alternate measures, with

one exception.31

8 Conclusion

We incorporate intangible capital into measures of investment and Tobin’s q, and we show that

the investment-q relation becomes stronger as a result. Specifically, measures that include intan-

gible capital produce higher R2 values and larger slope coefficients on q, both in firm-level and

macroeconomic data. We also show that the investment-cash flow relation becomes much stronger

if one properly accounts for intangible investments. These results hold across several types of firms

and years. The increase in R2, however, is especially large where intangible capital is most impor-

tant, for example, in the high-tech and health industries. Estimation results also indicate that our

measure of total q is closer to the unobservable true q than the standard physical q measure is.

Our results have two main implications. First, researchers using Tobin’s q as a proxy for firms’

investment opportunities should use a proxy that, like ours, includes intangible capital. One benefit

of our proxy is that it is easy to compute for a large panel of firms. Second, the results change our

31The lone exception is the Tobin’s q measure from Kogan and Papanikolaou (2014). Their measure equals the
market value of equity plus the book value of debt plus the book value of preferred equity minus inventories and
deferred taxes, all divided by PP&E). Erickson and Whited (2000, 2012) also show that our main physical-capital
measure outperforms alternate ones.
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assessment of the classic q theory of investment, or at least the version predicting a linear relation

between investment and Tobin’s q. On one hand, the increase in R2 indicates that the theory fits

the data better once we address an important source of measurement error. On the other hand,

cash flow becomes even more strongly related to investment, contrary to the theory’s predictions.

Our results point toward several questions for future research. How can we better measure firms’

intangible capital? Besides the investment-q relation, what other existing empirical results change

upon including intangible capital in investment, cash flow, or q? To what degree are physical and

intangible capital substitutes or complements? We have focused on the classic q theory of Hayashi

(1982) and others, but it is also important to include intangible capital in tests of more recent,

general theories.
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Appendix A: Measuring Firms’ Initial Capital Stock

This appendix explains how we estimate the stock of knowledge and organizational capital in

some firm i’s first non-missing Compustat record. We describe the steps for estimating the initial

knowledge-capital stock; the method for organizational capital is similar. Broadly, we estimate

firm i’s R&D spending in each year of life between the firm’s founding and its first non-missing

Compustat record, denoted year one. Our main assumption is that the firm’s pre-IPO R&D grows

at the average rate across pre-IPO Compustat firms. We then apply the perpetual inventory method

to these estimated R&D values to obtain the initial stock of knowledge capital at the end of year

zero. The specific steps are as follows:

1. Define age since IPO as number of years elapsed since a firm’s IPO. Using the full Compustat

database, compute the average log change in R&D in each yearly age-since-IPO category.

Apply these age-specific growth rates to fill in missing R&D observations before 1977.

2. Using the full Compustat database, isolate records for firms’ IPO years and the previous two

years. (Not all firms have pre-IPO data in Compustat.) Compute the average log change

in R&D within this pre-IPO subsample, which equals 0.348. (The corresponding pre-IPO

average log change in SG&A equals 0.327).

3. If firm i’s IPO year is in Compustat, go to step 5. Otherwise go to the next step.

4. This step applies almost exclusively to firms with IPOs before 1950. Estimate firm i’s R&D

spending in each year between the firm’s IPO year and first Compustat year assuming the

firm’s R&D grows at the average age-specific rates estimated in step one above.

5. Obtain data on firm i’s founding year from Jay Ritter’s website. For firms with missing

founding date in Ritter’s data, estimate the founding year as the minimum of (a) the year of

the firm’s first Compustat record and (b) firm’s IPO year minus 8, which is the median age

between founding and IPO for IPOs from 1980-2012 (from Jay Ritter’s web site).

6. Estimate the firm i’s R&D spending in each year between the firm’s founding year and IPO

year assuming the firm’s R&D grows at the estimated pre-IPO average rate from step two
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above.

7. Apply the perpetual inventory method in equation (3) to the estimated R&D spending from

the previous steps to obtain Gi0, the stock of knowledge capital at the beginning of the firm’s

first Compustat record.

We use estimated R&D and SG&A values only to compute firms’ initial stocks of intangible

capital. For example, we never use estimated R&D in a regression’s dependent variable.
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Appendix B: Proofs

Proof of Prediction 1. We can write the cost of investment as

c (Kt, It, p
∗

t ) = Kt

[
γ

2

(
It
Kt

)2

+ p∗t
It
Kt

]
, (21)

where p∗t ≡ min (p1t, p2t) also follows a general diffusion process with drift and volatility that depend

on xt. Abel and Eberly (1994) show that linear homogeneity in π ≡ F (K,L, ε) − wL implies

max
L

π (K,L, ε) = H (ε)K. (22)

We can therefore write the value function as

Vt = max
i1,t+s, i2,t+s

∫
∞

0
Et

{[
H (εt+s)−

γ

2

(
It+s

Kt+s

)2

+ p∗t+s

It+s

Kt+s

]
Kt+s

}
. (23)

Since the objective function and constraints can be written as functions of total capital K and not

K1 and K2 individually, the firm’s value depends on K but not on K1 and K2 individually:

V (K1,K2, ε, p1, p2) = V (K, ε, p1, p2) . (24)

Following the same argument as in Abel and Eberly’s (1994) Appendix A, firm value must be

proportional to total capital K :

V (K, ε, p1, p2) = Kqtot (ε, p1, p2) . (25)

Partially differentiating this equation with respect to K1 and K2 yields (15).

Proof of Prediction 2. Following a similar proof as in Abel and Eberly (1994), one can derive

the Bellman equation and take first-order conditions with respect to I to obtain

qtot = cI (K, I, p∗) = γ
I

K
+ p∗, (26)
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which generates (16). Details are available upon request.

Appendix C: Numerical solution of the investment model

We choose specific functional forms to solve the model numerically. We assume a Cobb-Douglas

production function

π (K,L, ε) = εLαK1−α
− wL,

so that

π(K, ε) = max
L

π (K,L, ε) = H (ε)K (27)

H (ε) = hεθ

h = α
α

1−αw
α

α−1 − α
1

1−αw
α

α−1

θ =
1

1− α
.

We assume the exogenous variables follow uncorrelated, positive, mean-reverting processes:

d ln εit = −φ ln εitdt+ σεdB
(ε)
it

d ln p1t = −φ ln p1tdt+ σpdB
(p1)
t

d ln p2t = −φ ln p2tdt+ σpdB
(p2)
t .

The goal here is to solve for the function qtot (ε, p1, p2) . Following the approach in Abel and

Eberly (1994), one can show that the Bellman equation is

qtot (r + δ) = πK (K, ε) − cK (I,K, p1, p2) + E
[
dqtot

]
/dt. (28)

Substituting in and applying Ito’s lemma yields

qtot (r + δ) = hεθ +
1

2γ

(
qtot − p∗

)2
+ qtotx µ (x) +

1

2
qtotxxΣ (x) . (29)

We numerically solve this equation for qtot (ε, p1, p2) using the collocation method of Miranda and
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Fackler (2002), which approximates qtot as a polynomial in ε, p1, and p2 and their interactions.

We use the following parameter values to illustrate the solution:

α = 0.5, w = 0.1, r = 0.2, δ = 0.1, γ = 100

φ = 2, σε = 0.1, σp = 0.2.

We choose a high discount rate r and adjustment costs γ so that qtot is finite.

We simulate a large panel of data on ιtotit , ι
phy
it , qtotit , and qphyit , then we estimate the panel regressions

(17) and (19) by OLS. We repeat the simulation 50 times to obtain average simulated R2 and slope

estimates.

To solve the nonlinear model, we scale by the nonlinear capital aggregator, Kρ
1K

1−ρ
2 , and then

apply value-function iteration. We simulate annual data using the same parameters as above,

except for the following discrete-time adjustments: the annual discount factor is β = exp(−0.2),

the annual depreciation rate is δ = 1− exp(−0.1), and the annual AR1 coefficient is exp(−2).
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Figure 1. This figure plots the mean intangible capital intensity over time, both for our full sample
and within industries. Intangible intensity is the firm’s stock of intangible divided by its total stock
of capital. We use the five-industry definition from Fama and French (1997) and exclude industry
“Other.”
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Figure 2. This figure plots Tobin’s q and the investment rates for the aggregate U.S. economy.

The left panel uses data from Hall (2001) and includes only physical capital in q and investment.

The right panel uses data from Corrado and Hulten (2014) and includes both both physical and

intangible capital in q and investment. For each graph, the left axis is the value of q and the right

axis the investment rate (investment / capital)
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Table 1

Summary Statistics

Statistics are based on the sample of Compustat firms from 1975 to 2010. The physical capital stock equals PP&E.

We estimate the intangible capital stock, Intan, by applying the perpetual inventory method to firms’ intangible

investments, defined as R&D + 0.3 × SG&A; we then add in firms’ balance-sheet intangibles. Intangible intensity

equals the intangible capital stock divided by the total capital stock (PP&E+Intan). Knowledge capital is the part

of intangible capital that comes from R&D. The numerator for both q variables is the market value of equity plus

the book value of debt minus current assets. The denominator for all “phy” variables is PP&E. The denominator

for all “tot” variables is the total capital stock. The numerator for ιphy is CAPX, and the numerator for ιtot is total

investment (CAPX+R&D+0.3×SG&A). The numerator for physical cash flow is income before extraordinary items

plus depreciation expenses; the numerator for total cash flow is the same but adds back intangible investment net a

tax adjustment.

Variable Mean Median Std Skewness

Intangible capital stock 692 59.8 3438 14.1
Physical capital stock 1237 77.9 6691 16.5
Intangible intensity 0.44 0.46 0.27 -0.03
Knowledge capital / Intangible capital 0.18 0.00 0.28 2.07

Physical q (qphy) 3.14 0.93 7.22 4.41
Physical investment (ιphy) 0.19 0.11 0.24 3.52
Physical cash flow (cphy) 0.15 0.16 0.62 -1.63

Total q (qtot) 1.07 0.56 1.83 3.71
Total investment (ιtot) 0.22 0.17 0.19 2.77
Total cash flow (ctot) 0.16 0.15 0.19 0.55
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Table 2

OLS Results

Results are from OLS regressions of investment on Tobin’s q, cash flow, and firm and year fixed effects. The variable

q denotes Tobin’s q, ι denotes investment, and c denotes cash flow. The numerator for both q variables is the market

value of equity plus the book value of debt minus current assets. The denominator for all “phy” variables is PP&E.

The denominator for all “tot” variables is the total capital stock, PP&E+Intan. The numerator for ιphy is CAPX,

and the numerator for ιtot is total investment (CAPX+R&D+0.3×SG&A). The numerator for physical cash flow is

income before extraordinary items plus depreciation expenses; the numerator for total cash flow is the same but adds

back intangible investment net a tax adjustment. Bootstrapped standard errors clustered by firm are in parentheses.

We report the within-firm R2. Data are from Compustat from 1975 to 2010.

Panel A: Total investment (ιtot)

qtot 0.054∗∗∗ 0.057∗∗∗ 0.045∗∗∗ 0.047∗∗∗

(0.001) (0.001) (0.001) (0.001)

qphy 0.012∗∗∗ -0.001∗∗ 0.009∗∗∗ -0.001∗

(0.000) (0.000) (0.000) (0.000)

ctot 0.259∗∗∗ 0.316∗∗∗ 0.259∗∗∗

(0.007) (0.007) (0.007)

R2 0.319 0.242 0.320 0.368 0.318 0.368
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

N 141800 141800 141800 141800 141800 141800

Panel B: Physical investment (ιphy)

qtot 0.065∗∗∗ 0.041∗∗∗ 0.063∗∗∗ 0.040∗∗∗

(0.001) (0.002) (0.001) (0.002)

qphy 0.017∗∗∗ 0.008∗∗∗ 0.017∗∗∗ 0.008∗∗∗

(0.000) (0.000) (0.000) (0.000)

cphy 0.030∗∗∗ 0.032∗∗∗ 0.028∗∗∗

(0.003) (0.003) (0.003)

R2 0.243 0.233 0.255 0.248 0.238 0.259
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

N 141800 141800 141800 141800 141800 141800
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 3

Bias-Corrected Results

Results are from regressions of investment on a proxy for Tobin’s q and cash flow. Columns labelled “OLS” reproduce

the OLS results from Table 2. CUM denotes the cumulants estimator with firm and year fixed effects. IV denotes

instrumental variable estimation, with three lags of cash flow and Tobin’s q used as instruments for the first difference

of Tobin’s q. AB denotes estimation of this same first-differenced regression with the same instruments, but using

the GMM estimator of Arellano and Bond (1991). Panel A uses the total-capital measures ιtot, qtot, and ctot. Panel

B uses the physical-capital measures ιphy , qphy, and cphy . ρ2 is the R2 from a hypothetical regression of investment

on true q, and τ 2 is the R2 from a hypothetical regression of our q proxy on true q. Bootstrapped standard errors

are in parentheses. Data are from Compustat from 1975 to 2010.

Panel A: Total investment (ιtot)

OLS CUM IV AB OLS CUM IV AB

qtot 0.054∗∗∗ 0.097∗∗∗ 0.031∗∗∗ 0.015∗∗∗ 0.045∗∗∗ 0.096∗∗∗ 0.025∗∗∗ 0.026∗∗∗

(0.001) (0.001) (0.005) (0.002) (0.001) (0.001) (0.005) (0.002)
ctot 0.259∗∗∗ 0.148∗∗∗ 0.166∗∗∗ 0.157∗∗∗

(0.007) (0.009) (0.008) (0.008)

ρ2 0.428 0.482
(0.008) (0.007)

τ2 0.588 0.539
(0.007) (0.007)

N 141800 141800 88700 99553 141800 141800 88700 99553

Panel B: Physical investment (ιphy)

OLS CUM IV AB OLS CUM IV AB

qphy 0.017∗∗∗ 0.036∗∗∗ 0.012∗∗∗ 0.006∗∗∗ 0.017∗∗∗ 0.035∗∗∗ 0.011∗∗∗ 0.009∗∗∗

(0.000) (0.001) (0.002) (0.001) (0.000) (0.000) (0.002) (0.001)
cphy 0.032∗∗∗ 0.015∗∗∗ 0.026∗∗∗ 0.023∗∗∗

(0.003) (0.003) (0.002) (0.002)

ρ2 0.372 0.371
(0.007) (0.007)

τ2 0.492 0.494
(0.010) (0.009)

N 141800 141800 88700 99553 141800 141800 88700 99553
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 4

Comparing Firms With Different Amounts of Intangible Capital

This table shows results from subsamples formed based on yearly quartiles of intangible intensity, which equals the

ratio of a firm’s intangible to total capital. Results are from regressions of investment on q, cash flow, and year

and firm fixed effects. Slopes on q, as well as ρ2 and τ 2 values, are from the cumulant estimator. R2 is from the

OLS estimator. Panel B controls for cash flow, panel A does not. Columns labeled “Physical” use the physical-

capital measures ιphy , qphy and cphy , while columns labeled “Total” use the total-capital measures ιtot, qtot and

ctot, as defined in the notes for Table 1. ∆ denotes the difference between the Total and Physical specifications.

Bootstrapped standard errors clustered by firm are in parentheses. Data are from Compustat from 1975-2010.

Panel A: No Cash Flow
Quartile 1 (low) Quartile 2 Quartile 3 Quartile 4 (high)

Physical Total Physical Total Physical Total Physical Total
q 0.064∗∗∗ 0.131∗∗∗ 0.053∗∗∗ 0.106∗∗∗ 0.035∗∗∗ 0.088∗∗∗ 0.033∗∗∗ 0.088∗∗∗

(0.007) (0.006) (0.006) (0.005) (0.002) (0.003) (0.001) (0.002)
R2 0.182 0.229 0.192 0.260 0.247 0.344 0.301 0.477

(0.009) (0.009) (0.011) (0.010) (0.012) (0.013) (0.010) (0.009)
∆R2 0.047 0.068 0.097 0.176

ρ2 0.195 0.316 0.281 0.396 0.375 0.460 0.559 0.571
(0.018) (0.012) (0.027) (0.019) (0.022) (0.023) (0.016) (0.012)

∆ρ2 0.121 0.115 0.085 0.012

τ2 0.691 0.587 0.505 0.493 0.485 0.518 0.440 0.649
(0.057) (0.026) (0.052) (0.023) (0.031) (0.023) (0.012) (0.014)

∆τ2 -0.104 -0.012 0.033 0.209

N 35438 35438 35453 35453 35442 35442 35467 35467

Panel B: With Cash Flow
Quartile 1 (low) Quartile 2 Quartile 3 Quartile 4 (high)

Physical Total Physical Total Physical Total Physical Total
q 0.065∗∗∗ 0.125∗∗∗ 0.054∗∗∗ 0.104∗∗∗ 0.034∗∗∗ 0.088∗∗∗ 0.033∗∗∗ 0.089∗∗∗

(0.008) (0.006) (0.006) (0.006) (0.002) (0.004) (0.001) (0.002)
c 0.185∗∗∗ 0.220∗∗∗ 0.072∗∗∗ 0.147∗∗∗ 0.011 0.110∗∗∗ -0.003 0.136∗∗∗

(0.022) (0.025) (0.020) (0.021) (0.009) (0.020) (0.004) (0.014)
R2 0.208 0.269 0.212 0.317 0.255 0.401 0.303 0.525

(0.010) (0.010) (0.012) (0.010) (0.012) (0.013) (0.010) (0.009)
∆R2 0.061 0.105 0.146 0.222

ρ2 0.236 0.353 0.310 0.447 0.365 0.520 0.550 0.644
(0.020) (0.012) (0.025) (0.018) (0.022) (0.020) (0.016) (0.011)

∆ρ2 0.117 0.137 0.155 0.094

τ2 0.643 0.559 0.473 0.454 0.499 0.469 0.447 0.589
(0.060) (0.026) (0.046) (0.022) (0.028) (0.019) (0.012) (0.013)

∆τ2 -0.084 -0.019 -0.030 0.142

N 35438 35438 35453 35453 35442 35442 35467 35467
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5

Comparing Industries

This table shows results from industry subsamples. We use the Fama-French five-industry definition, excluding the

industry “Other.” Manufacturing includes manufacturing and energy firms but not utilities. Consumer includes

consumer goods, retail, and service firms. High Tech includes software, business equipment, and telecommunications

firms. Health Care includes health care, pharmaceutical, and medical equipment firms. Remaining details are the

same as in Table 4.

Panel A: No Cash Flow

Manufacturing Consumer High Tech Health Care
Physical Total Physical Total Physical Total Physical Total

q 0.041∗∗∗ 0.112∗∗∗ 0.042∗∗∗ 0.108∗∗∗ 0.033∗∗∗ 0.089∗∗∗ 0.038∗∗∗ 0.098∗∗∗

(0.002) (0.005) (0.002) (0.004) (0.001) (0.002) (0.002) (0.003)

R2 0.186 0.246 0.214 0.307 0.354 0.462 0.258 0.343
(0.010) (0.009) (0.011) (0.012) (0.008) (0.011) (0.013) (0.014)

∆R2 0.060 0.093 0.108 0.085

ρ2 0.206 0.301 0.290 0.391 0.549 0.575 0.545 0.537
(0.011) (0.012) (0.014) (0.018) (0.013) (0.012) (0.024) (0.020)

∆ρ2 0.095 0.101 0.026 -0.008

τ 2 0.655 0.601 0.539 0.533 0.511 0.644 0.365 0.494
(0.044) (0.028) (0.036) (0.026) (0.014) (0.014) (0.025) (0.023)

∆τ 2 -0.054 -0.006 0.133 0.129

N 40280 40280 36884 36884 31680 31680 11207 11207

Panel B: With Cash Flow

Manufacturing Consumer High Tech Health Care
Physical Total Physical Total Physical Total Physical Total

q 0.040∗∗∗ 0.107∗∗∗ 0.041∗∗∗ 0.110∗∗∗ 0.032∗∗∗ 0.089∗∗∗ 0.038∗∗∗ 0.098∗∗∗

(0.002) (0.006) (0.002) (0.007) (0.001) (0.002) (0.002) (0.004)
c 0.083∗∗∗ 0.283∗∗∗ 0.048∗∗∗ 0.186∗∗∗ 0.001 0.106∗∗∗ -0.003 -0.005

(0.014) (0.022) (0.010) (0.032) (0.004) (0.013) (0.009) (0.033)

R2 0.202 0.317 0.236 0.390 0.355 0.495 0.258 0.364
(0.010) (0.009) (0.011) (0.012) (0.008) (0.011) (0.014) (0.015)

∆R2 0.115 0.154 0.140 0.106

ρ2 0.227 0.385 0.309 0.493 0.541 0.623 0.547 0.536
(0.010) (0.011) (0.014) (0.016) (0.013) (0.011) (0.024) (0.018)

∆ρ2 0.158 0.184 0.082 -0.011

τ 2 0.635 0.530 0.520 0.446 0.518 0.602 0.364 0.495
(0.044) (0.032) (0.033) (0.021) (0.014) (0.014) (0.024) (0.023)

∆τ 2 -0.105 -0.074 0.084 0.131

N 40280 40280 36884 36884 31680 31680 11207 11207
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6

Comparing Time Periods

This table shows results from the early (1975–1995) and late (1996–2010) subsamples. The 1995 breakpoint produces

subsamples of roughly equal size. Remaining details are the same as in Table 4.

Panel A: No Cash Flow
Early Late

Physical Total Physical Total
q 0.043∗∗∗ 0.110∗∗∗ 0.033∗∗∗ 0.091∗∗∗

(0.002) (0.003) (0.001) (0.001)
R2 0.209 0.265 0.268 0.348

(0.008) (0.009) (0.007) (0.008)
∆R2 0.056 0.080

ρ2 0.262 0.337 0.479 0.510
(0.010) (0.011) (0.011) (0.010)

∆ρ2 0.075 0.031

τ2 0.615 0.583 0.477 0.595
(0.026) (0.022) (0.011) (0.011)

∆τ2 -0.032 0.118

N 69753 69753 72047 72047

Panel B: With Cash Flow
Early Late

Physical Total Physical Total
q 0.044∗∗∗ 0.108∗∗∗ 0.033∗∗∗ 0.090∗∗∗

(0.002) (0.004) (0.001) (0.002)

c 0.074∗∗∗ 0.270∗∗∗ -0.008 0.041∗∗∗

(0.009) (0.018) (0.004) (0.011)
R2 0.233 0.357 0.268 0.367

(0.007) (0.009) (0.007) (0.008)
∆R2 0.124 0.099

ρ2 0.299 0.443 0.474 0.520
(0.010) (0.011) (0.011) (0.010)

∆ρ2 0.144 0.046

τ2 0.564 0.487 0.482 0.585
(0.025) (0.021) (0.011) (0.011)

∆τ2 -0.077 0.103

N 69753 69753 72047 72047
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7

Time-Series Macro Regressions

Calculations are based on quarterly aggregate U.S. data from 1972Q2 through 2007Q2. In the top panel, the dependent

variable is total investment (physical + intangible), deflated by the total capital stock. In the bottom panel, the

dependent variable is total physical investment (PP&E) deflated by the total physical capital stock. Physical q equals

the aggregate stock and bond market value divided by the physical capital stock; Hall (2001) computes these measures

from the Flow of Funds. Total q includes intangible capital by multiplying physical q by the ratio of physical to total

capital; the ratio is from Corrado and Hulten’s (2014) aggregate U.S. data. Bond q is constructed by applying the

structural model of Philippon (2009) to bond maturity and yield data; these data are from Philippon’s web site.

Newey-West standard errors, with autocorrelation up to twelve quarters, are reported in parentheses.

Panel A: Total investment (ιtot)

Total q 0.017∗∗∗ 0.016∗∗∗

(0.003) (0.003)

Physical q 0.012∗∗∗ 0.012∗∗∗

(0.002) (0.002)

Bond q 0.055 0.033 0.031
(0.032) (0.017) (0.018)

OLS R2 0.610 0.646 0.139 0.693 0.652
N 141 141 141 141 141

Panel B: Physical investment (ιphy)

Total q 0.003 0.001
(0.003) (0.002)

Physical q 0.002 0.001
(0.003) (0.002)

Bond q 0.061∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.009) (0.009) (0.009)

OLS R2 0.047 0.035 0.462 0.465 0.466
N 141 141 141 141 141
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 8

Regressions Using Simulated Data

This table shows results of regressing investment on q in simulated panel data. Panel A shows
results from a linear model that assumes physical and intangible capital are perfect substitutes.
Panel B shows results from a model that relaxes this assumption and aggregates the two capital
types according to K0.5

1 K0.5
2 . We numerically solve the models, simulate large panels of data, and

regress investment on q and time fixed effects. Details on both models are in Section 6. Details
on the simulations are in Appendix C. Model (1) regresses total investment on total q, whereas
model (2) regresses physical investment on physical q. Specifically, model (1) defines investment as
ιtot = (I1 + I2)/(K1 + K2) and q as qtot = V/(K1 + K2), where I1 and I2 are the investments in
physical and intangible capital, respectively, K1 and K2 are the two capital stocks, and V is firm
value. Model (2) defines investment as ιphy = I1/K1 and q as qphy = V/K1. We assume γ = 100,
so the bias in 1/γ is the percent difference between the q-slope and 0.01.

Panel A: Linear Model

Regression R2 Slope on q Bias in 1/γ
(1) Total investment on total q 1.000 0.0100 0
(2) Physical investment on physical q 0.489 0.0049 -51%

Panel B: Nonlinear Model

Regression R2 Slope on q
(1) Total investment on total q 0.409 0.00035
(2) Physical investment on physical q 0.013 0.00031
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Table 9

Robustness: What Fraction of SG&A Is An Investment?

Results are from regressions of investment on q and year and firm fixed effects. Slopes on q, as well as ρ2 and τ2 values, are from the

cumulant estimator. R2 is from the OLS estimator. The first column reproduces results from Tables 2 and 3 using our main physical capital

measures, qphy and ιphy. The remaining columns show results using variations of the total-capital measures, qtot and ιtot. Each variation uses

a different SG&A multiplier. The multiplier, shown in the table’s top row, is the fraction of SG&A that represents an investment rather than

an operating expense. Our main total-capital measures assume a 0.3 multiplier. Data are from Compustat from 1975 to 2010.

Physical Total Capital with Alternate SG&A Multipliers
Capital 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q 0.036∗∗∗ 0.069∗∗∗ 0.080∗∗∗ 0.089∗∗∗ 0.097∗∗∗ 0.105∗∗∗ 0.112∗∗∗ 0.119∗∗∗ 0.127∗∗∗ 0.134∗∗∗ 0.139∗∗∗ 0.146∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
R2 0.233 0.279 0.303 0.314 0.319 0.323 0.324 0.323 0.323 0.321 0.319 0.317

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
ρ2 0.372 0.407 0.419 0.424 0.428 0.429 0.429 0.430 0.431 0.430 0.428 0.426

(0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009)
τ2 0.492 0.548 0.574 0.584 0.588 0.590 0.591 0.588 0.585 0.582 0.581 0.578

(0.010) (0.008) (0.008) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009)
N 141800 141800 141800 141800 141800 141800 141800 141800 141800 141800 141800 141800
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10

Robustness: Alternate Measures of Intangible Capital

Results are from regressions of investment on q and year and firm fixed effects. Slopes on q, as well as ρ2 and τ2

values, are from the cumulant estimator. R2 is from the OLS estimator. The first two rows reproduce results

from Tables 2 and 3 with our main physical-capital measures (ιphy and qphy) and total-capital measures (ιtot

and qtot). Rows 2–8 show results using variations of our total-capital measure. Rows three and four use

alternate values of δSG&A, the depreciation rate for organization capital. Row five excludes goodwill from

balance-sheet intangibles, while row six excludes all balance-sheet intangibles. Row seven assumes firms have

no intangible capital before entering Compustat. Row eight estimates firms’ starting intangible capital using

the method of Falato, Kadryzhanova, and Sim (2013). Rows 9a and 9b use our main measures but drop each

firm’s first five years of data. Rows 10a and 10b use our main measures but drop firm/year observations

with missing R&D. Data are from Compustat from 1975 to 2010.

R2 τ2 ρ2 Slope on q N

1. Physical capital (from Tables 2, 3) 0.233 0.492 0.372 0.036 141800
(0.005) (0.010) (0.007) (0.001)

2. Total capital (from Tables 2, 3) 0.319 0.588 0.428 0.097 141800
(0.005) (0.007) (0.008) (0.001)

3. δSG&A =10% 0.330 0.599 0.437 0.099 141800
(0.005) (0.008) (0.008) (0.001)

4. δSG&A =30% 0.314 0.582 0.421 0.096 141800
(0.005) (0.007) (0.008) (0.001)

5. Exclude goodwill 0.321 0.590 0.429 0.097 141800
(0.005) (0.007) (0.008) (0.001)

6. Exclude balance-sheet intangibles 0.300 0.570 0.421 0.089 141800
(0.005) (0.009) (0.008) (0.001)

7. Zero initial intangible capital 0.335 0.597 0.448 0.101 141800
(0.005) (0.007) (0.008) (0.001)

8. FKS initial multiplier 0.289 0.561 0.398 0.095 141800
(0.005) (0.008) (0.008) (0.001)

9. Drop first five years per firm
a. Physical capital 0.125 0.327 0.227 0.032 82174

(0.005) (0.021) (0.014) (0.002)
b. Total capital 0.201 0.416 0.290 0.088 82174

(0.007) (0.022) (0.016) (0.004)
10. Exclude observations with missing R&D

a. Physical capital 0.293 0.479 0.486 0.035 75426
(0.007) (0.011) (0.013) (0.001)

b. Total capital 0.401 0.624 0.511 0.091 75426
(0.009) (0.010) (0.013) (0.001)
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Table 11

Robustness: Alternate Measures of Physical Capital

Results are from regressions of investment on q and year and firm fixed effects. Slopes on q, as well as ρ2 and τ 2 values,

are from the cumulant estimator. R2 is from the OLS estimator. The first two rows reproduce results from Tables 2

and 3 with our main total-capital measures (ιtot and qtot) and physical-capital measures (ιphy and qphy) . Rows 3–7

show results using variations of our physical-capital measure. Variation 1 computes q as the market value of equity

(CSHO times PRCCF, from CRSP) plus assets (AT) minus the book value of equity (CEQ+TXBD from Compustat)

all divided by assets (AT). Variation 2, from Kogan and Papanikoaloau (2014), computes q as the market value of

equity(CSHO times PRCCF) plus book value of debt (DLTT) plus book value of preferred equity (PSTKRV) minus

inventories (INVT) and deferred taxes (TXDB) divided by book value of capital (PPEGT). Variation 3 computes q

as the market value of assets divided by the book value of assets (AT), where the market value of assets equals the

book value of debt (LT) plus the market value of equity (PRCCF times CSHO). Variation 4 computes q as book

value of assets (AT) plus the market value of equity (CSHO times PRCCF) minus book equity all over assets. Book

equity is defined as total assets less total liabilities (LT) and preferred stock (PSTKRV) plus deferred taxes (TXDB)

and convertible debt (DCVT). Variation 5 computes q as the book value of assets (AT) less the book value of equity

(CEQ) plus the market value of equity (CSHO times PRCCF) all over the book value of assets. In each variation, the

dependent variable is physical investment, measured as CAPX divided by the same denominator as in the q measure.

Data are from Compustat from 1975 to 2010.

R2 τ2 ρ2 Slope on q N

1. Total capital (from Tables 2, 3) 0.319 0.588 0.428 0.097 141800
(0.005) (0.007) (0.008) (0.001)

2. Physical capital (from Tables 2, 3) 0.233 0.492 0.372 0.036 141800
(0.005) (0.010) (0.007) (0.001)

3. Physical capital variation 1 0.127 0.259 0.290 0.101 137060
(0.003) (0.010) (0.008) (0.003)

4. Physical capital variation 2 0.259 0.514 0.407 0.033 137209
(0.006) (0.012) (0.008) (0.001)

5. Physical capital variation 3 0.127 0.261 0.290 0.100 141800
(0.003) (0.008) (0.009) (0.003)

6. Physical capital variation 4 0.127 0.258 0.294 0.102 137209
(0.004) (0.009) (0.009) (0.003)

7. Physical capital variation 5 0.127 0.259 0.290 0.101 141618
(0.003) (0.008) (0.009) (0.003)

54


